Acta Crystallographica Section B Structural Science

ISSN 0108-7681

J. Hauck* and K. Mika

Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany

Correspondence e-mail: j.hauck@fz-juelich.de

Architecture of crystal structures from square planes

The crystal structures of ordered b.c.c. (body-centered cubic), f.c.c. (face-centered cubic) or primitive cubic alloys $A_x B_y$ and related NaCl, ZnS or CaF₂ derivative structures are characterized by the self-coordination numbers T_1 , T_2 of the Aatoms with A atoms. Structures with identical T_1 and T_2 values for all A atoms are at the corners of T_1 and T_2 structure maps, and can be analyzed for attractive or repulsive interactions of A atoms. Most observed structures are at the borders of the structure map and can be obtained by ~10 different combinations of structural units. The different combination mechanisms explain *e.g.* the shear structures of CuAu II or Nb₂O₅ and the occurrence of vacancies in NaCl-related structures like NbO.

1. Introduction

A large number of crystal structures can be described as ordered body-centered cubic (b.c.c.), face-centered cubic (f.c.c.) or primitive cubic (p.c.) compounds $A_x B_y$ or as NaCl, ZnS or CaF₂ derivative structures (Villars & Calvert, 1986; Parthé et al., 1993) with a distribution of A and B atoms on different positions. The number of observed structures is small compared with the number of all possible structures, which is 2^{n-1} for a unit cell with *n* possible positions of *A* or *B* atoms. All reduced unit cells of the b.c.c., f.c.c. and p.c. lattice with $n \leq 9$ atom positions were determined and the different structures selected numerically in the present investigation. The theoretical structures can be sorted for different aspects such as high symmetry, single coordination numbers or the extent to which Pauling's rules (Pauling, 1929) are obeyed. Pauling's rule of parsimony is particularly useful for the selection: 'The number of essentially different kinds of constituents in a crystal tends to be small'. The polyhedra circumscribed about all chemically identical atoms should, if possible, be chemically similar and similar in the nature of the sharing of corners, edges and faces with other polyhedra. This explanation is similar to the Wiener-Sohncke principle: 'Points are disposed around each point in the same way as around every other' (Wiener, 1863; Sohncke, 1879; Brunner, 1971). We have selected the self-coordination numbers (s-CN) of A atoms with A atoms as parameters to characterize these structures (§2). Table 1 shows the maximum s-CN values T_i^{max} for coordination shells i = 1-10 for a variety of structures, which can be obtained from the square lattice. The maximum values are reduced if some of these positions are occupied by B atoms in $A_x B_y$ (Fig. 1). A large number of possible structures can be characterized by these T_i values and homometric structures (structures with identical T_i values, §3) can be

Received 1 May 1998 Accepted 27 April 2000

© 2000 International Union of Crystallography Printed in Great Britain – all rights reserved differentiated by different space groups. The T_i values can be plotted in T_1 , T_2 structure maps such as those shown in Fig. 2.

The large variety of orderings of atoms in $A_x B_y$ is characterized by the number of nearest, next-nearest and thirdnearest neighbors of A atoms, T_1 , T_2 and T_3 , and the ratio of Aand B atoms $y/x \ge 1$. The $T_1 T_2 T_3$; y/x values of the minority component A are sufficient to characterize an undistorted structure. The self-coordination numbers T_1 , T_2 and T_3 of the A atoms with A atoms in $A_x B_y$ compounds can be plotted to create a T_1 , T_2 or T_1 , T_2 , T_3 structure map such as that shown in Fig. 2.

The numerical procedure to obtain a structure map will be outlined for a single square layer occupied by A and B atoms (Fig. 1*a*). The procedure contains the following steps:

(i) The unit cell of the square layer is increased by adding more squares and the corners of the squares occupied by A and B atoms (Fig. 1*b*).

(ii) The positions at the corners are occupied with *A* atoms to a maximum of 50% at $y/x \ge 1$. The structures at higher *A* content are identical by exchange of the *A* and *B* atoms.

(iii) The different crystal structures are characterized by the coordination of the A atoms with other A atoms in the first, second and third coordination shells T_1 , T_2 and T_3 , and the ratio y/x of B to A atoms, e.g. the notation 2 0 4; 1 is used for the structure with $T_1 = 2A$ atoms at distance a, no A atoms in the second coordination shell at distance $2^{1/2}a$, $T_3 = 4A$ atoms at distance 2a and y/x = 1. $T_1^{\text{max}} = T_2^{\text{max}} = T_3^{\text{max}} = 4$ are the maximum self-coordination numbers of the square layer. The coordination numbers of each shell are averaged for structures which have differently coordinated A atoms, e.g. the 0 4 2, 2 0 2 and 1 2 4 (twice) coordination numbers of the four A atoms are averaged in the 1 2 3; 1 structure.

(iv) The crystal structures characterized by the coordination numbers T_1 , T_2 and T_3 , and a fixed composition y/x can be plotted as single points in a three-dimensional T_1 , T_2 , T_3 graph (§3) or as a projection in the T_1 , T_2 plane as shown in Figs. 1b and 2. All structures with y/x = 1 are found to fall within a triangle, with the three structures $4 \ 4 \ 4; (1), 2 \ 0 \ 4; 1$ and $0 \ 4 \ 4; 1$ at the corners. The structure $4 \ 4 \ 4; (1)$ with the composition given by (1) in brackets can only be obtained in the limit of very large unit cells, because the boundary line between the A and B clusters prevents an exact realisation $4 \ 4 \ 4; 1$ for finite cells. The $4 \ 4 \ 4; (1)$ values are also valid for an occupation of all sites by A atoms.

(v) The structures with y/x = 1 shown on the structure map can be considered as combinations of the variously shaded squares containing different numbers of *A* atoms and different configurations (*cis* and *trans*) for the occupation of two positions (Fig. 1*b*). The 0 4 4; 1 and 2 0 4; 1 structures at the righthand and upper corners of the triangle (Figs. 1 and 2) consist of squares containing two *A* atoms in opposite *trans* or neighboring *cis* configurations, respectively. The other structures at the right-hand side with the same composition as *e.g.* 1 2 3; 1 can be obtained by a combination of the two structural units of 0 4 4; 1 and 2 0 4; 1 (shown with different shading). The 4 4 4; (1) structure at the left-hand corner of the triangle can be considered as complete segregation of *A* and *B* atoms with

Table 1

Maximum self-coordination numbers (s-CN values) T_i^{max} and radii R_i of shells in units of $a_0/2$ (CaF₂, perovskite series, face-centered cubic, body-centered cubic lattice) or a_0 (square net) for the first to the tenth coordination of A atoms with A atoms ($A_x B_y$), F with F atoms (CaF₂) or O atoms with O atoms (perovskite series), respectively.

	p.c./CaF ₂		Perov	vskite	f.c.c.		b.c.c.		Square	
i	T_i	R_i^2	T_i	R_i^2	T_i	R_i^2	T_i	R_i^2	T_i	R_i^2
1	6	1	4	1	12	2	8	3	4	1
2	12	2	8	2	6	4	6	4	4	2
3	8	3	8	3	24	6	12	8	4	4
4	6	4	6	4	12	8	24	11	8	5
5	24	5	16	5	24	10	8	12	4	8
6	24	6	16	6	8	12	6	16	4	9
7	12	8	12	8	48	14	24	19	8	10
8	30	9	20	9	6	16	24	20	8	13
9	24	10	16	10	36	18	24	24	4	16
10	24	11	24	11	24	20	32	27	8	17

complete occupancy of the squares by A or B atoms, respectively. These structural units can be combined with squares containing two A atoms in a *cis* configuration to the structures at the left-hand border of the triangle. Points within the triangle are obtained by the combination of all structural units.

(vi) The s-CN values T_i^A and T_i^B of A and B atoms are different for y/x > 1. The s-CN values of the minority component A are plotted in Fig. 2 for $A_x B_y$, $y/x \ge 1$. The lefthand border of the structure map is common for all values of y/x, whereas the right-hand border is different for different y/xvalues, as indicated by a broken line for y/x = 2 in Fig. 2. An alternative way of representing the structure diagram is to use the Cowley–Warren short-range order parameter α_i (Hauck, 1980), as defined in (1) and (2) below. This can have values $-1 \le \alpha_i \le 1$ and can be obtained from the self-coordination numbers (s-CN) T_i^A and T_i^B of A and B atoms or from the T_i^A and y/x values (Hauck & Mika, 1994) by means of (1)–(6).

a

$$v_i = 1 - p_i^B / y',$$
 (1)

$$y' = y/(x+y),$$
 (2)

$$T_{i}^{B} = T_{i}^{\max} - (T_{i}^{\max} - T_{i}^{A})x/y,$$
(3)

$$\alpha_i T_i^{\max} = T_i^A + T_i^B - T_i^{\max}, \qquad (4)$$

$$\alpha_i T_i^{\max} = T_i^A - (T_i^{\max} - T_i^A) x/y, \tag{5}$$

$$T_i^{\max} = T_i^A + T_i^{AB}.$$
 (6)

 p_i^B is the probability of finding a *B* atom in the *i*th coordination shell of an *A* atom. *y'* is the fraction of *B* atoms in $A_x B_y$ as given by (2). The coordination numbers $CN = T_i^{AB}$ of *A* atoms coordinated by *B* atoms are related to T_i^A by (6). Structures with compositions y/x > 1 can be obtained by using other structural units. The 0 0 4; 3 structure at the top-right corner of the structure map for y/x = 3 (Fig. 2) contains only squares with single occupancy. The 2 0 2; 3 structure contains squares with *cis* occupation or without *A* atoms similar to that for y/x =1. The structures on the right-hand border as *e.g.* 0 2 2; 2 can also be obtained by structural units similar to those for y/x = 1, however, with different concentrations of units containing zero, single or double (*trans*) occupation.

The 2 0 2; 2, 1 0 3; 2 and 0 2 2; 2 structures at the corners of the y/x = 2 field each consist of a combination of two structural units only. Structures at the borders as *e.g.* 3 2 2; 2 or inside the y/x = 2 field contain three or more structural units, respectively.

(vii) The α_i values are zero for a random distribution of A and B atoms, because the mean value of $T_i^A + T_i^B$ equals T_i^{max} , which corresponds *e.g.* to $T_1 = T_2 = T_3 = 2$ at composition y/x =

Ta

 T_2

1 (Fig. 2). Very small α_i values are expected for $A_x B_y$ with very weak interactions between A and A or B and B atoms and in particular at high temperatures. Positive α_1 values are obtained for attractive interactions of A atoms, *i.e.* for cluster formation or segregation. The 2 0 2; 2 and 3 2 2; 2 structures of Fig. 1(b) consist of single and double rows of A atoms, respectively. Proceeding down the left-hand border of the structure map (Fig. 2) corresponds to increasing size of the A and B clusters until complete segregation of A and B atoms occurring in the 4 4 4; (1) structure. Negative α_1 values indicate repulsive interactions such as Coulomb repulsion between A atoms.

(viii) Two-dimensional square structures are observed *e.g.* for gas molecules adsorbed on the (100) surfaces of b.c.c. metals (MacLaren *et al.*, 1987). The extent of occupation of the surface of the metal atoms with gas molecules depends on the size of the gas molecules, the equilibrium gas pressure and the interaction between the molecules. The unit cell is usually described by the length of the two sides $l_1 \times l_2$ relative to the underlying b.c.c. cell (Hauck & Mika, 1994, 2000*b*; MacLaren *et al.*, 1987). There are different structures with identical unit cells for the occupation of two or more positions, as can be seen by the two 2 × 3 structures 1 0 3; 2 and 0 2 2; 2 (Fig. 1*b*).

(ix) Other structures such as *e.g.* 0 0 4; 3 and 0 4 4; 1 at the right-hand border of the structure map have the same cell size, but different concentrations. An 0 0 4; 3 structure of metal atom *A* can be combined with a second 0 0 4; 3 structure of A' at the center to give $AA'B_2$ or A_2B_2 with an 0 4 4; 1 structure. This type of combination of structural units is quite frequent in ordered b.c.c., f.c.c. and p.c. alloys (§§3–5).

Figure 1

(a) Self-coordination of A atoms by nearest, next-nearest and third-nearest A atoms T_1 , T_2 and T_3 in square planes. (b) The structures of planar $A_x B_y$ compounds denoted as $T_1 T_2 T_3$; y/x contain squares with 0-4 A atoms (•) with a different shading of these structural units.

The most important structures at the corners of the structure map have a single set of T_i values such as 2 0 4; 1, 0 4 4; 1 and 004; 3 in Fig. 1(b). The structures at the corners and along borders of the triangular structure map (for y/x = 1) can be analyzed for different interactions between A atoms and a combination of structural units at the borders can be used to vary these interactions. The three corners of the structure map correspond to repulsive interactions between A atoms (e.g. Coulomb repulsion) in opposite *trans* positions (0 4 4; 1 structure), attractive interactions (e.g. covalent bonding) for A atoms in neighboring cis positions (2 0 4; 1 structure), and segregation of A and B atoms in 444; (1). Since in this case the crystal splits into all A and all B regions, the composition cannot be obtained for finite unit cells and is indicated by placing y/x in parentheses [step (iv), Fig. 1b]. The observed structures found in more complex systems are those on the right-hand border and in particular the structures at the corners of the structure map (2 0 4; 1, 0 4 4; 1 and 0 0 4; 3; Hauck & Mika, 1994). The coordination number of the A atoms by nearest neighbor B atoms $CN = 4 - T_1$ increases from 2 in 2 0 4; 1 to 4 in 0 4 4; 1.

Pauling's rule of parsimony is obeyed for these structures: The number of essentially different kinds of constituents in a crystal tends to be small (Pauling, 1929, 1960; Burdett, 1995). Structures, in which all A and all B atoms have the same coordination sequence (T_i) , e.g. 2 0 4; 1 and 0 4 4; 1 in Fig. 1, are usually highly symmetric, whereas structures containing Aatoms with different environments, such as e.g. 1 2 3; 1 or 3 2 2; 1 in Fig. 1(b), are built from different structural units. The symmetry of these structures is usually lower because of the different symmetry of the structural units (Hauck & Mika,

Figure 2

 T_1 , T_2 structure map of ordered $A_x B_y$ crystal structures $T_1 T_2 T_3$; y/x of square layers. The structures of Fig. 1 (•) are at the boundaries of the structure map, which vary at the right-hand side for different y/x. The A atoms of the AB alloys (y/x = 1) are segregated in 4 4 4; (1), attracted in 2 0 4; 1, repelled in 0 4 4; 1, or random in 2 2 2; 1.

1994). In most cases, the experimentally observed symmetry is identical with the symmetry determined for the undistorted lattice. Sometimes the symmetry is decreased because of the Jahn-Teller effect of transition metal d electrons or because of a lone pair of main group elements such as Bi³⁺. The structures at the top and right-hand corners of the structure map also obey Pauling's electrovalence rule: The electrovalence of each B atom in $A_{y}B_{y}$ should be compensated by the charge q of the z neighboring A atoms with coordination number CN $(\sum zq/CN = charge of B atoms; Pauling, 1929, 1960; Burdett,$ 1995). The 2 0 4; 1 and 0 4 4; 1 structures of Fig. 1 for oxide layers AO (i.e. B = oxygen) with divalent A atoms contribute the total electrovalence 2 to O atoms and compensate their formal charge -2. On the other hand, one of the three different O atoms of the 123; 1 structure with electrovalencies 1.84, 2 and 2.33 does not obey Pauling's electrovalence rule within the allowed deviation of $\sim 1/6$ (1.83 - 2.17). Most electrovalencies of f.c.c., b.c.c. or p.c. structures of the righthand borders of the structure maps are within this limit ($\S6$).

The square-planar layers of Fig. 1(b) can be packed to give the body-centered cubic (b.c.c.) or face-centered cubic (f.c.c.) lattice with the lattice constants a_1 and a_2 , respectively. The A atoms in the center of the b.c.c. cell (• in Fig. 3) have $T_1 = 8$ nearest neighbors at the distance $a_1 3^{1/2}/2$ and $T_2 = 6$ secondnearest neighbors at the distance a_1 . The self-coordination numbers (s-CN) of nearest neighbors T_1 increase from 8 in b.c.c. to 12 in the f.c.c. lattice (Table 1). Many NaCl, CaF₂ and CaTiO₃ related structures can also be obtained from square layers with an ordering of Cl, F or O atoms and vacancies. The Cl atoms of NaCl form an f.c.c. lattice and the F atoms of CaF₂ a primitive cubic (p.c.) lattice. In CaTiO₃ the two positions of the p.c. lattice (\circ in Fig. 3) are occupied by metal atoms such as Ca and Ti and three positions by vacancies. In NaCl four positions are occupied by Na atoms. Fig. 3 shows the T_i values of Cl atoms in NaCl, F atoms in CaF2 and O atoms and vacancies in the CaTiO₃ series.

The metal atoms such as Ca and Ti of $CaTiO_3\square_3$ and the interstitial O atoms and vacancies \square at pseudo-octahedral sites [(6b) positions of $Im\bar{3}m$] form together a primitive cubic structure with lattice constant $a_0/2$ similar to the F atoms of CaF₂ (Fig. 3). CaTiO₃ and most superconducting oxides are in this group (Hauck & Mika, 1997, 1998b; Hauck *et al.* 1999). The maximum s-CN values of the atoms lying on a p.c. lattice $(T_1 = 6, T_2 = 12, T_3 = 8)$ are decreased for O atoms in the CaTiO₃ series $(T_1 = 4, T_2 = 8, T_3 = 8)$, because of the metal atoms (\circ) at two positions of the p.c. lattice.

Previous investigations (Hauck *et al.*, 1988*a*,*b*, 1989; Hauck & Mika, 1993, 1994) have shown that the structures are most likely to be found at the borders of the structure map. All *A* (and all *B*) atoms of 8 b.c.c., 17 f.c.c. and 18 p.c. structures at the corners of the structure maps have the same set of T_i values (single sets for *A* and *B* atoms, $M^i = 2$), as was required by the Wiener–Sohncke principle. Four f.c.c. and four p.c. structures have identical T_1 and T_2 values. The remaining 20 b.c.c., 9 f.c.c. and 20 p.c. structures with the same sets of T_i values for *A* and *B* atoms are not at the boundaries of the structure map (§§3–5).

Figure 3

Coordination polyhedra for the square, body-centered metal (b.c.c.), NaCl (f.c.c. lattice of Cl atoms), primitive cubic (p.c. F atoms in CaF₂) and the O atom lattice in CaTiO₃ and related structures with all possible sites for O atoms [6(b) position of $Im\bar{3}m$; perovskite series]. The central atom is shown by a filled circle (•) and the neighbors are shown by numbers with (1) for nearest, (2) for next-nearest and (3) for third-nearest neighbor positions. Some positions of the primitive cubic lattice are occupied by other atoms shown as open circles (\circ), *e.g.* Na in the NaCl and Ca, Ti in the CaTiO₃ derivative structures. Note that in CaTiO₃ not all the neighboring sites are occupied by O.

Some of these structures were also obtained using different Ising methods such as Monte Carlo simulations (Ducastelle, 1991) by assuming different interaction energies V_i^{AA} , V_i^{BB} and V_i^{AB} between A - A, B - B and A - B bonds in the *i*th shell (§2) or by the investigation of homogeneous sphere packing (Koch & Fischer, 1992). The ab initio crystal structure predictions by the Ising method are limited by the rapid increase in the values of V_i , where V_i is the interaction constant of the *i*th shell, with increased cluster size (Sanchez & de Fontaine, 1981). The structures with the same T_i values for all A and B atoms (§2) can be compared with homogeneous sphere packings, in which the A or B atom positions are vacant. The number of contacts between homogeneously packed spheres corresponds to the T_1 values of A or B atoms. In some cases T_1 will be zero and the number of contacts corresponds to the T_2 values. A small number of different types of homogeneous sphere packing, which is important for ordered b.c.c., f.c.c. and p.c. structures, is selected in the present investigation. These structures are shown on T_1 , T_2 structure maps and the relationship between different structures is outlined for different structure families. Most observed structures (§§3-5) can be described by a combination of structural units such as the structures of the Ruddlesden–Popper structure family. The T_1 and T_2 values vary linearly at the borders of the structure map and the neighborhood of A atoms changes gradually with a minimum

of different surroundings, as is required by Pauling's rule of parsimony. The structures can be assembled from structural units similar to a jigsaw puzzle. Most series of structures (structure families) can be described by a linear sequence of structural units. Therefore, the total number of structures at the borders of the structure maps is to a large extent limited. Up to four structural units labeled a and b, for example, can be combined to the six sequences ab, a_2b_2 , ab_2 , ab_3 , a_2b and a_3b (Hauck et al., 1999). The combination of structural units such as squares with two A atoms in cis or trans configurations was outlined for the square-planar net (Fig. 1b).

The structure maps of b.c.c., f.c.c. and p.c. lattices will be analyzed in \$\$3-5 for ~100 structural units. Only a few structural units in about 10 different series of structures with varying degrees of repulsive (ionic) and attractive (covalent) bonding are observed. The correlation between distorted b.c.c. and f.c.c. alloys or NaCl, ZnS and perovskite-related structures will be discussed in \$6. The close relation of structures obtained from square planes can also be visualized by many identical projection

patterns or identical space groups and Pearson symbols (§6). Some structures can be considered as an intergrowth of b.c.c., f.c.c. and p.c. or CaF₂ slabs (Parthé *et al.*, 1993; Kripyakevich & Grin, 1979; Pani & Fornasini, 1990). Most of the slabs in these compounds with different ordering of metal atoms are very similar to the structural units of the present investigation.

2. Ising-type analysis of structure families

We have investigated the borders of structure maps for ordered b.c.c., f.c.c. and p.c. $A_x B_y$ structures with the following numerical procedure, similar to those outlined in previous investigations (Hauck *et al.*, 1988*b*,*c*, 1989; Mika *et al.*, 1989; Hauck & Mika, 1993, 1994):

(a) Determination of all reduced unit cells (Křivý & Gruber, 1976) with a maximum of nine sites for A or B atoms (Tables 1A–3A of deposited material¹). The lattice constants $a_0 = 2$ allow integer values for the cell parameters and x, y, z coordinates of atoms.

(b) Occupation of sites in different concentrations and configurations.

¹ Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR0078). Services for accessing these data are described at the back of the journal.

(c) Selection of $A_x B_y$ structures $T_1 T_2 T_3$; y/x with identical s-CN values and composition y/x.

- (d) Elimination of identical structures.
- (e) Projection in different directions.
- (f) Determination of the space group (Mika et al., 1994).

The T_1 , T_2 and T_3 values were plotted for different y/x values to create three-dimensional structure maps and the structures on the borders were analyzed for structural units (such as the squares with A in *cis* and *trans* configurations in Fig. 1). The structures with larger unit cells could be constructed as soon as the structural units were known.

Some structures of the present compilation were obtained by a different method (Ising model), as will be outlined briefly in the following: At high temperatures many binary alloys $A_{x}B_{y}$ adopt a disordered form of one of the common crystal structures of metals: cubic close-packed (c.c.p.), hexagonal close-packed (h.c.p.) or body-centered cubic (b.c.c.). At lower temperatures the different metal atoms A and B order because of decreased entropy of mixing and increased attractive or repulsive interaction constants $\pm |V_i|$ in the *i*th coordination shell, i = 1, 2, ..., where $V_i = V_i^{AA} + V_i^{BB} - 2V_i^{AB}$ is given by the interaction energies between A - A, B - B and A - B bonds in the *i*th shell (Kanamori & Kakehashi, 1977); $V_i > 0$ favors A -B bonds, $V_i < 0$ favors A - A and B - B bonds (Ducastelle, 1991; Allen & Cahn, 1972). These authors have derived sets of ordered structures applying the Ising model with V_1 , V_2 or ratios V_2/V_4 and V_3/V_4 as parameters.

An analysis of these $A_x B_y$ structures has shown that the *B* atoms of many structures exhibit not a single coordination as the *A* atoms do, but two to five different self-coordination numbers T_i^B for different *B* atoms in the same structure. In a few cases the different T_i^B values start to deviate with a slightly different coordination only in a higher coordination shell, *e.g.* in the sixth coordination.

3. Body-centered cubic alloys $A_x B_y$

We have determined numerically the structures $A_x B_y$ with a single coordination ($M^i = 2$, §2) up to the 10th shell of all A and B atoms with an upper bound of x + y = 9 for b.c.c. structures. Of the 27 b.c.c. structures thus obtained (Table 2a, Fig. 1A, deposited), 10 b.c.c. structures were previously derived by the Ising model (Finel & Ducastelle, 1984). These 10 structures are at the corners of the $T_1 T_2 T_3$; y/x structure map. Only the five ordered compounds 4 4 4; 1a (γ -TiCu), 4 0 12; 1 (NaTl), 0 6 12; 1 (CsCl), 2 0 6; 2 (CeCd₂) and 0 4 4; 2 (MoSi₂) are observed. Approximately 40 other observed structures (Table 2b, Fig.2A, deposited) are on the borders of the T_1 , T_2 , T_3 structure map (Fig. 4). The six structures with y/x = 1 (0 6 12; 1, 2 4 6; 1, 4 0 12; 1, 4 2 4; 1, 4 4 4; 1, 6 4 6; 1), and the 8 6 12; (1) structure (corresponding to segregation of Aand B atoms) are at the seven corners (C) of a polyhedron in the T_1 , T_2 , T_3 coordinate system containing 15 edges (E; Hauck & Mika, 1997). With Euler's formula C + P = E + 2, topological consistency requires P = 10 planes. The decahedron is projected as a triangle in the T_1, T_2 coordinate system (Fig. 4) with 0 6 12; 1 (CsCl) (repulsion), 4 0 12; 1 (NaTl)

(attraction) and 8 6 12; (1) (segregation) as corners. The other structures are inside the triangle (Fig. 4). Structures such as 2 3 12; (1) or 6 3 12; (1) at the borders of the T_1 , T_2 structure map (Fig. 4) can only be obtained as suprema in the limit of very large unit cells in a similar way to 8 6 12; (1). The other structures along the edges of the $T_1 T_2 T_3$; y/x structure map allow the analysis of architecture by structures at the corners of the structure map projected in several different directions to illustrate the different structural units for structures on different edges of the T_1, T_2, T_3 structure map (Hauck & Mika, 1997).

There are 10 b.c.c. homometric structures, as indicated by curly brackets in Table 2(a) – structures with an identical coordination (all T_i) of all atoms. The homometric crystal structures cannot be distinguished by powder patterns of X-ray or neutron diffraction if the lattice is undistorted. They are labeled with *a* and *b* in Fig. 1A (deposited) and are bracketed in Tables 2–6. In other ('quasi-homometric') structures the T_i^B values of the majority component *B* deviate at higher coordination numbers as *e.g.* in 2 0 0; 7a,b or 0 2 2; 7a,b (Table 1A, deposited) or T_i^A and T_i^B values of both *A* and *B* components deviate for i > 3.

Some structures in Table 2(*a*) exhibit identical Cowley short-range order parameters α_i , but have different compositions *y/x*. These series of homologous structures have identical unit cells which are filled up successively by *A* atoms until T_i^{\max} is reached (Table 3). Each *A* and each *B* atom of these structures must have the same set of numbers T_1 , T_2 and T_3 , respectively. The structure with maximum $r^* = (y/x)_{\max}$ value, $T_1^* T_2^* T_3^*; r^*$, is filled up with *A* atoms in steps of $k = r^*, ...1, 0$ to complete occupation with *A* atoms at y/x = 0 (Hauck & Mika, 1994)

$$T_i(k) = T_i^{\max} - (T_i^{\max} - T_i^*)k/r^*,$$

$$y/x = k/(r^* + 1 - k).$$

These homologous series of structures also contain structures with $2k \le r^*$ in Table 3 having A and B atoms interchanged,

Figure 4

 T_1 , T_2 structure map of ordered b.c. $A_x B_y$ compounds $T_1 T_2 T_3$; y/x for the [001] (**a**) and [111] (**a**) layered compounds (Table 2*b*).

similar to $AuCu_3$ and $CuAu_3$ in the f.c.c. lattice (Hauck & Mika, 1994).

All structures of homologous series are usually at corners or edges of the structure map. In a few cases only the structures with maximum $r^* = (y/x)_{max}$ values are on the border (homologous II series, see §5). Other series of structures with identical unit cells are on the same border of the structure map with different α_i values (quasi-homologous structures).

The existence of homometric and homologous series of structures (with identical α_i values), as introduced above, shows that a single set of interaction parameters V_i can give rise to different structures. A final remark concerns homometric structures: these were not found in investigations of the Ising model (Ducastelle, 1991; Allen & Cahn, 1972; Finel & Ducastelle, 1984; Kanamori & Kakehashi, 1977).

Most of the observed crystal structures of ordered b.c.c. alloys (Parthé et al., 1993) can be related to three different series of structures (Table 2b): The combination of 4 4 4; 1a and 0 6 12; 1 to give 2.7 4.7 6.7; 1 [Fig. 1A(*a*), deposited], the combination of 2 0 6; 2 and 0 3 9; 2 to give 0.7 2 8; 2 [Fig. 1A(d), deposited] and structures which can be considered as CsCl defect structures. Closely related structures with different composition were included within these series (Table 2b). For example, the Ti_2Cu_3 and Ti₃Cu₄ structures can be obtained by a combination of the MoSi₂ (0 4 4; 2) and γ -TiCu (4 4 4; 1) structures [Fig. 2A(a), deposited]. Au₂Nb₃ can be considered as a combination of 4 4 4; 2 and γ -TiCu (4 4 4; 1). Ti₃Pd₅ and Os₂Al₃ are combinations of $MoSi_2$ (0 4 4; 2) and CsCl (0 6 12; 1).

The 0 3 9; 2 structure is realised for SiFe₂ (HT) and Ti or Al atoms in the (Nb, Al)(Nb, Ti)Ti₂Al₂ structure [Fig. 2A(b), deposited]. The 2 0 6; 2 structure occurs for CeCd₂ or for PbLi₂, which is part of

Table 2

(a) Coordination T_1 , T_2 and T_3 of A atoms and composition y/x in b.c.c.

A = W, Pa, Np ($M^i = 1$) and b.c.c. $A_x B_y$ with single $T_i(A)$ and $T_i(B)$ values ($M^i = 2, \$2$) (Fig. 1A, deposited) [homometric structures a, b are indicated by curly brackets, $T_i; y/x$ values in brackets are not at the border of the structure map (Fig. 4)], coordination of A atoms and composition in square [or hexagonal (*)] planes, space group (SG) and Pearson symbol (PS), No. of reduced unit cell in Table 1A (deposited) and positions of atoms A_2-A_4 in addition to A_1 in the origin.

$T_i(A); y/x$	$T_i(A); y/x$	66	DC	N-	4	4	
D.C.C.	square	3 G	P5	NO.	A_2	A_3	A_4
8 6 12; (1)	4 4 4; (1)	229	cI21	1			
(6 4 6; 1)†	2 2 0: 1	67	oC8	7	111		
(5 3 5; 1)†	124;1	2	aP8	40	Ī 1 3	$\bar{2} 0 4$	002
(4 4 4; 1a)†]	4 4 4; (1)	129	tP4	10	111		
(4 4 4; 1b)†	204;1	131	tP8	45	002	131	111
(4 3 4; 1)†	1 2 2; 1	11	mP8	46	1 1 3	111	002
(4 2 6; 1a)	2 2 0; 1	11	mP4	8	022		
(4 2 6; 1b)	2 2 0; 1	66	oC16	52	202	$\bar{1} 1 1$	111
(4 2 5; 1)	1 2 4; 1	2	aP8	39	$\bar{2} 0 2$	Ī 3 3	022
(4 2 4; 1a)†]	204;1	65	oC4	2			
(4 2 4; 1b)†	204;1	141	<i>tI</i> 16	55	$\bar{1} \ \bar{1} \ 1$	$1 \overline{1} \overline{1}$	200
(4 1 8; 1)†	0 4 4; 1	74	oI16	49	ī 1 3	$\bar{1} 1 1$	002
4 0 12; 1	0 4 4; 1	227	cF16	13	111		
(3 3 5; 1)†	1 2 4; 1	2	aP8	53	$0\bar{2}0$	$1 \bar{3} \bar{1}$	111
(2 4 6; 1)†	2 2 0; 1	74	<i>oI</i> 8	12	002		
0 6 12; 1	4 4 4; (1)	221	cP2	3			
(4 2 4; 1.3a)	2 2 2; 1.3‡	2	aP7	31	111	$2\bar{2}0$	
(4 2 4; 1.3b)	2 2 2; 1.3‡	146	hR7	31	002	$2\bar{2}0$	
(2 3 3; 1.5)	1 1 1; 1.5	12	mC10	17	111		
(4 2 2; 2a)†	2 0 2; 2	69	oF12	4			
· · · · }	0 6 0; 2‡						
(4 2 2; 2b)†	0 6 0; 2‡	151	hP9	58	002	$1\bar{1}1$	
(2 2 2; 2)†	0 6 0; 2‡	2	aP9	66	022	$1\bar{3}1$	
2 0 6; 2	6 6 6; (1)‡	164	hP3	5			
0 4 4; 2	4 4 4; (1)	139	<i>tI</i> 6	6			
(3 1 2; 2.5)	1 1 1; 2.5‡	2	aP7	31	$2\bar{2}0$		
2 0 0; 3	0 0 6; 3‡	166	hR4	9			
0 2 0; 4	0 0 0; 4	87	<i>tI</i> 10	17			
2 0 0; 6	0 0 0; 6‡	148	hR7	31			

† On the borders of the T_1 T_2 T_3 ; y/x polyhedron. ‡ Hexagonal planar.

(b) Structures and $T_i(A)$ values of $A_x B_y C_z$ alloys (Fig. 2A, deposited) with sequences of layers AB (= a), ABB (= b) etc. A second space group is given for structures with higher SG than originally reported.

			0	0	5 1	
$A_x B_y C_z$		SG	PS	$T_i(A)$	$T_i(B)$	$T_i(C/D)$
W		229	cI2	8 6 12; (1)		
LT Pa		139	tI2	8 6 12; (1)		
β-Np		129/90	tP4	8 6 12; (1)		
α-Np		62	oP8	8 6 12; (1)		
Layered (001) struct	ures (Schubert et a	l., 1960) [Fig.	2A(a) depo	osited]		
CsCl	a(AB)	221	cP2	0 6 12; 1		
MoSi ₂	$b(AB_2)$	139	tI6	0 4 4; 2		
ReSi ₂	b	71	<i>oI</i> 6	0 4 4; 2		
VAu ₂	b	63/38	oC12	0 4 4; 2		
AlAu ₂	b	62	oP12	0 4 4; 2		
AB ₃	$c(AB_3)$	123	tP4	0 4 4; 3		
γ-TiCu	$d(A_2B_2)$	129	tP4	4 4 4; 1		
Au ₂ Nb ₃	$e(A_2B_3)$	139	<i>tI</i> 10	4 4 4; 1.5		
AB_2	$f(A_2B_4)$	129	tP6	4 4 4; 2		
AB	$g(A_4B_4)$	129	tP8	658;1		
Ti ₃ Cu ₄	bd	139	<i>tI</i> 14	2.7 4 4; 1.3		
Ti ₂ Cu ₃	bdb	129	<i>tP</i> 10	2 4 4; 1.5		
Os ₂ Al ₃	ab	139	<i>tI</i> 10	0 5 8; 1.5		
Ti ₃ Pd ₅	bab	123	tP8	0 4.7 6.7; 1.7		
$ReAl(Re,Al)_2$	ACBC	123	tP4	0 4 4; 3	0 4 4; 3	0 6 12; 1
Lavered (111) struct	ures (Zalkin & Ra	msey, 1956) [F	Fig. 2A(b) d	leposited]		
CsCl	h(AB)	221	cP2	0 6 12; 1		
CeCd ₂ (PbLi ₂)	$k(AB_2)$	164	hP3	2 0 6; 2		
BiF ₃ , AlFe ₃	$l(AB_3)$	225	cF16	0 0 12; 3		
AB_4	$m(AB_4)$	166	hR15	0 0 6; 4		

$A_x B_y C_z$		SG	PS	$T_i(A)$	$T_i(B)$	$T_i(C/D)$
AB_5	$n(AB_5)$	164	hP6	0 0 6; 5		
NaTl	$o(A_2B_2)$	227	cF16	4 0 12; 1		
Al ₂ Li ₃	$p(A_2B_3)$	166	hR15	3 0 9; 1.5		
(AlLi)	$q(A_3B_3)$	164	hP6	4 2 8; 1		
Pb ₂ Li ₇	lm	164/150	hP9	0 0 9; 3.5		
$(P\dot{b}_4 L\dot{i}_{11})$	klll	164	hP15	0.5 0 10.5; 2.75		
Pb ₂ Li ₂	lkl	166	hR33	0.7 0 10; 2.7		
(Si_5Li_{12})	lklkl	164	hP18	0.8 0 9.6; 2.6		
Si ₂ Li ₅	kl	166	hR21	1 0 9: 2.5		
$Zn(Ag,Zn)_2$	k	147	hP9	2 0 6: 2		
AB	ho	156	hP18	2.9 2 10.7; 1		
SiFe ₂ HT	hl	164	hP6	0 3 9: 2		
PtAl	hl	164	hP12	0 3 9: 2		
Galli	op	164	hP9	3.5 0 10.5: 1.25		
(AlLi ₂)	ln	164	hP9	2.0.10:2		
Ge.Cu.Li.	ABC.BAC.	164	hP9	0.0.9:35	106.35	
(Nb Al)(Nb Ti)Ti Al	ACDRDC	164	hP6	0 0 6: 5	0.0.6:5	039.2
$N_i \square A_1$	ACACBC	164	hP5	0 3 9: 2	0 0 6; 5	039,2
SpMaLiDd	ARCD	216	cF16	0.5.9, 2 0.0.12:3	0 0 0, 5 0 0 12:3	0 0 12.3
	ABCD	210	cF16	0 0 12, 3 0 0 12, 3	0 0 12, 3 0 0 12, 3	4 0 12, 3
ABSOLI ₂	ADCC	210	cr10 •F16	0 0 12, 5	0 0 12, 3	4012, 3
Alwincu ₂	ACBC	120	<i>CF</i> 10	0 0 12; 5	0 0 12; 5 0 0 12; 2	0 6 12; 1
VSnRn ₂	ACBC	139	118	0 0 12; 3	0 0 12; 3	0 6 12; 1
UShPd ₂	ACBC	69/62	<i>oF</i> 10	0 0 12; 3	0 0 12; 3	0 6 12; 1
CsCl related structures wi	th composition o	f Cs/Cl laver	s [Figs. 2A((a) and (b) deposite	dl	
$Au(ZnAu)_{2}$	$A_2 B_2 / B_4$	63/26	oC16	046:3		
$(M_0,U)U_2$	AB/B_{2}	123	tP4	0 2 4: 3		
Zn ₂ Ga ₂ Pd ₂	$A_{2}B_{1}/C_{2}$	146	hR42	024.37	0.3.6.2.5	0.6.12.1
$Pu_{a}Pd_{a}$	$A_{c}B/B_{c}$	148	hR42	$0.5.10 \cdot 1.3$, -
CsCl	A/B	221	cP2	0 6 12: 1		
UCo	A/B	199	cI16	0 6 12; 1		
BT AuCd	A/B	157	hP18	0 6 12: 1		
La(AgIn)	A/B	130	tI16	0 6 12: 1		
δ TiCu	A/B	123	1110 +P2	$0 \ 0 \ 12, 1$ 0 6 12: 1		
DT DuGo	A/D	123	11 Z tI16	$0 \ 0 \ 12, 1$ 0 6 12: 1		
NI TuOa	A/D	65	n10 2 C 8	0 6 12, 1		
u-vII NoHa	A/D	63	0C8	0 6 12, 1		
Nang Au(Cu Zn)	A/D	03 55	0C10 • D9	0 6 12; 1		
Au(Cu,Zn)	A/D	33	018	0 0 12; 1		
Au(Zn,Au)	A/B	20	<i>oP</i> 16	0 6 12; 1		
KHg	A/B	2	aP8	0 6 12; 1		
Other structures [Fig. 2A(a) deposited]					
Pb ₅ Li ₂₂		216/196	cF432	0 0 4.8; 4.4		
In ₃ Li ₁₃		227	cF128	0 0 4; 4.3		
Sb ₂ Tl ₇		229	cI54	0 1 4; 3.5		
AuMn ₃		123	<i>tP</i> 12	0 2.67 4; 3		
Sn ₂ Li ₇		11	mP20	0 3.3 4: 2.3		
GaLi		63	oC12	2 0 8: 2		
V ₄ Zn ₅		139	tI18	4 3 4: 1.2		
4				,		

(Schubert *et al.*, 1960), Ti_2Cu_3 and Ti_3Cu_4 (Schubert *et al.*, 1964), Pb_2Li_7 (Zalkin & Ramsey, 1956) and Pb_3Li_8 (Zalkin *et al.*, 1956).

The Zn₃Ga₄Pd₇ and Pu₃Pd₄ structures of Fig. 2A(b) (deposited) are closely related to the CsCl (AB) structure, but with larger unit cells because of the different stoichiometry. Some of the A = Zn, Ga, Pu, Cs sites are occupied by B = Pd, Cl. A similar situation occurs for AlFe₃, AlMnCu₂ (Heusler alloy), AgSbLi₂ and SnMgLiPd [Fig. 2A(a), deposited]. The Sn, Mg, Li and Pd atoms of SnMgLiPd can be combined in five different ways to vield CsCl [(Sn,Mg)(Li,Pd)],AlMnCu₂ [SnMg(Li,Pd)₂], AlFe₃ [Sn(Mg,Li,Pd)₃], AgSbLi₂ [LiSn- $(Mg,Pd)_2$]orNaTl[(Sn,Li)(Mg,Pd)]. The combination is similar to the sphalerite-related structures (Hauck & Mika, 1998a) or the combination of two 0 0 4; 3 square layers to give 0 4 4; 1 (Fig. 1) as was outlined in step (ix), §1.

The sequence Ni Al Ni Al \Box Al of vacancies $\Box = B$ in the Ni₂ \Box Al₃ structure (*ACACBC*) (Table 2*b*) can alternate in a sequence of Fibonacci numbers, if the composition is varied to Ni_{1.85} $\Box_{1.15}$ Al₃ (Chattopadhyay *et al.*, 1987).

The structures of Po (§5) and diamond have the same $T_i(A)$ values as CsCl (\Box Po) and NaTl (\Box C), respectively, with vacant Cs or Na positions. The number of vacancies \Box is increased to 432 - 58 = 374 in an idealized α -Mn (0 0 1.24; 6.45) with the

the Pb_3Li_8 structure. The Pb_3Li_8 , Al_2Li_3 and Si_2Li_5 structures can be divided in structural units similar to the 2 0 6; 2–0 3 9; 2 series [Fig. 2A(*b*), deposited]. CsCl is also a structural unit for combinations in the [111] direction (layers of Cs and Cl atoms, which alternate in the [111] direction).

The two families of structures with sequences of A or B atom layers in the [001] or [111] direction can be described by sequences of structural units $a \ (=)$ layer sequence AB), $b \ (=)$ layer sequence ABB) etc. (Table 2b), similar e.g. to the Ruddlesden–Popper and Aurivillius phases with sequences of v or v' (CaTiO₃) and w' (SrO) or W' (WBi₂O₆) structural units, respectively (Hauck & Mika, 1997). The present families of structures are also named by the pioneers who investigated the crystal structures of the first example of the series: Au₂Nb₃ *x*, *y*, *z* parameters of the 58 Mn atoms 1/3 (w = 0.317, u = 0.356), 1/4 (v' = 0.278), 1/12 (u' = 0.089) and 0 (v = 0.042) rather than the observed values in brackets (Wyckoff, 1982).

The metal atoms of the idealized superconducting oxides (Hauck & Mika, 1997, 1998*b*) lie on a b.c.c. lattice with structures similar to the Schubert family. The metal lattices of $CuLa_2O_4$ and $LaCu_2La_2O_7$ correspond to $MoSi_2$ and Os_2Al_3 ($AlOs_2Al_2$; Table 2*b*). The formulae $Cu'La_2O_4$, $La'Cu_2La_2O_7$ and $Cu'Ba_2Cu_2Y'O_7$ (instead of La_2CuO_4 , $La_3Cu_2O_7$ and $YBa_2Cu_3O_7$) show the sequence of metal atoms Cu'LaLa, La'CuLaLaCu and Cu'BaCuY'CuBa with a single Cu', La' and Y' at mirror planes and two other atoms left and right of the mirror plane.

Table 2 (continued)

4. Face-centered cubic alloys $A_x B_y$

The face-centered cubic structure is obtained if spheres with diameter d are ordered with the cubic close-packed structure. The distance between two identical square layers of the face-centered Cu structure $a_0 = 2^{1/2}d$ can be increased up to 1.66d in In, Ga, La or Ce, or decreased to 1.33d in Pu or 1.0d in W (Wyckoff, 1982; Ho & Douglas, 1968; Pearson, 1972; Villars & Calvert, 1986; Hyde & Andersson, 1989; Parthé *et al.*, 1993). The undistorted structures are compared in the present paper using the self-coordination numbers T_i of b.c.c. and f.c.c. alloys and their different locations on structure maps.

The 28 structures of ordered f.c.c. $A_x B_y$ with single $T_1 T_2 T_3$; y/x values ($M^i = 2$, §2) are listed in Table 4(a). 15 of these structures are at the corners of the structure map (Fig. 5). Only seven structures were obtained by the Ising model (Kanamori & Kakehashi, 1977). The 12 6 24; (1), 6 0 12; 1a,b, 4 4 16; 1 and 4 6 8; 1 structures are the limiting structures at y/x = 1 (Fig. 5). 6 0 12; 1a,b, 5 3 12; 1a,b and 4 2 12; 1.3a,b are homometric structures – structures with identical T_i values, but different symmetry as was outlined in §3. Other structures such as 2 2 12; 2a,b,c are 'quasi-homometric' with some deviations of higher T_i values. The lattice energies of the undistorted lattices as given by the Madelung factors are slightly different (Hauck *et al.*, 1988*b*,*d*).

The 0 6 0; 3 AuCu₃, 4 6 8; 1 CuAu, 2 2 12; 2a MoPt₂ and 0 2 8; 4 MoNi₄ structures are within homologous series of structures with identical α_i values (Table 5), as was outlined for b.c.c. alloys in §3.

Three different series of experimental structures are shown in Figs. 3A(a)-(c) (deposited). The compilation (Table 4b) also includes some theoretical structures and some NaCl (Hauck et al., 1988c) or ZnS (Hauck & Mika, 1998a) derivative structures, which are shown in Figs. 3A(a)-(d) (deposited), if the corresponding structures of alloys are not known. The Na and Cl atoms of the NaCl structure form two f.c.c. lattices with a translation $a_0/2$, $a_0/2$, $a_0/2$ of the lattice constant a_0 . The f.c.c. lattices of ZnS (sphalerite) are translated by $a_0/4$, $a_0/4$, $a_0/4$. The ordering of metal atoms at Na or Zn positions or nonmetal atoms at Cl or S positions can be characterized by the s-CN values T_i similar to alloys. In α -NaFeO₂, e.g. the Na and Fe atoms occupy the same positions as the Cu and Pt atoms in CuPt,a (Table 4b). The corresponding ZnS derivative structure is In(Ga,Al)P₂ with a disordered distribution of Ga and Al atoms at the Pt positions of the CuPt structure. In Cd \Box Cl₂ and $Gd_2 \square C$ the Cd atoms and vacancies \square or the C atoms and vacancies form the CuPt structure. In $\Box Nb_3\Box O_3$ the metal \Box Nb₃ and non-metal sublattices \Box O₃ are both ordered as in the AuCu₃ structure. The space group number and Pearson symbol listed in Table 4(b) correspond to the compounds $A_x B_y C_z$.

The T_1 and T_2 values in the $T_1 T_2 T_3$; y/x notation of NaClrelated compounds describe the connection of octahedra by edges and corners, respectively. For example, the 1 0 7; 4 UCl₅ structure contains UCl₆ octahedra connected by one edge to form (UCl₅)₂, while the UF₆ octahedra of 0 2 8; 4 UF₅ are connected by two corners in a one-dimensional row. The CTi₆

Table 3

s-CN values of some homologous set	ries of b.c.c. derivative structures (Fig.
1A. deposited) with different r and	k values (see text).

		. ,
<i>r</i> *	k	$T_i(A)$
6	6	200:6
6	5	3 1 2; 2.5
6	4	4 2 4; 1.33a,b
6	3	5 3 6; 0.75a,b
6	2	6 4 8; 0.4
6	1	7 5 10; 0.17
6	0	8 6 12; (0)
4	4	0 2 0 4
4	3	233.15
4	2	4 4 6: 0.67
4	1	6 5 9: 0.25
4	0	8 6 12; (0)
3	3	200.3
3	2	4 2 4 1a b
3	1	6 4 8 0.33
3	0	8 6 12; (0)

octahedra of 6 0 12; 1b Ti₂C are linked by six edges, the NTi₆ octahedra of 4 4 16; 1 Ti₂N are linked by four edges and four corners. The vacancies \Box of 0 0 8; 5 V₆C₅ \Box or the Re atoms of 0 0 8; 5 Li₅ReO₆ form isolated octahedra. Usually the metal atoms with high valency such as U⁵⁺ or Re⁷⁺ are as far apart as possible with low T_1 and T_2 values because of repulsive interactions.

The number T_1 of nearest neighbors of ZnS derivative structures corresponds to the number of ZnS₄ tetrahedra shared by corners. In *e.g.* (Ni, Cu)₅Si₂S₇ with an ordering of Si atoms as in the Mn₂Au₅ alloy (1 3 10; 2.5), each SiS₄ tetrahedron is linked to another SiS₄ tetrahedron in Si₂S₇ groups.

Pauling's electrovalence rule is satisfied for all NaCl derivative structures with composition r = y/x = 1, 2 and 5 along the upper right-hand border of the structure map with $T_2 = -2T_1 + 6(3 - r)$ for $1 \le r \le 2$ and $T_2 = -2T_1 + 2(5 - r)$ for $2 \le r \le 5$, and for all ZnS derivative structures with composition r = y/x = 1 and 3 along the right-hand border $(T_1 = 6 - 2r;$ Hauck & Mika, 1994, 1998*a*). The Ti atoms of Ti₂C \square (6 0 12; 1a structure) and Ti₂N \square (4 4 16; 1 structure) at the two ends of the $T_2 = -2T_1 + 12$ line are surrounded by three C atoms in a facial configuration in Ti₂N, because of the different interaction energies between these atoms.

The carbides Ti_2C , Gd_2C , Ti_8C_5 , V_6C_5 and V_8C_7 are located at low T_2 values of the structure map, indicating covalent-type bonding, while the nitrides Ti_2N , Nb_4N_3 and the hydrides Pd_2H , Pd_5D_4 are located at increased T_2 values, indicating Coulomb-type interactions (Table 4*b*; Hauck & Mika, 1994).

The N atoms of Ti_2N are further apart than the C atoms of Ti_2C and are stabilized by Coulomb interactions with a Madelung factor increased by 1.9%. The Ti_2C structure is stabilized by covalent forces with a slight reduction in the length of all Ti-C bonds (Hauck & Mika, 1994). A similar situation exists for a *cis* configuration of the Sn atoms in

Li₂SnO₃ (3 0 10; 2b) or mixed *cis* and *trans* configuration of Zr atoms in Li₂ZrO₃ (2 2 12; 2a). (The O atoms occupy all Cl positions of the NaCl structure.) A structure with all Zr atoms in *trans* configurations is not possible in NaCl derivative structures. At y/x = 5, as *e.g.* in Li₅ReO₆ or V₆C₅ \Box , isolated ReO₆ or \Box V₆ octahedra are formed with one Re atom (or \Box) next to each O (or V) atom.

The limiting structures 0 6 0; 3, 0 4 8; 3, 4 6 8; 1 and 4 4 16; 1 can be split into structural units u, v, x and y, which can be combined like the parts of a puzzle to obtain the crystal structures found at the right-hand border [Fig. 3A(c), deposited]. The u', v', x' and y' units are obtained from the u, v, x and y structural units by the translation $a_0/2$, $a_0/2$, 0.

The structures with a single environment of A atoms can be characterized by square or hexagonal layers with small unit cells, as shown in Table 4(a), and one or two structural units such as x (CuAu) or xy'x'y (UPb) [Fig. 3A(c), deposited]. The x'y structural units can be obtained by a shearing of the xy'units with the translation $a_0/2$, $a_0/2$, 0. Structures containing several related structural units such as yx_9 and $y'x'_9$ in CuAu II with the sequence $yx_9y'x'_9$ [Fig. 3A(c), deposited] are considered as shear structures with antiphase boundaries between yx_9 and $y'x'_9$ (Schubert, 1964; Sato & Toth, 1965; Hyde & Andersson, 1989). Other structures of Fig. 3A(c) (deposited) such as ZrGa₂ exhibit a symmetrical sequence of structural units (*vyuuyv*).

The observed structures (Table 4*b*) as *e.g.* the CuAu II or $ZrAl_3$ structure at the right-hand boundary of the structure map (Fig. 5) consist of *u*, *v*, *x*, *y* structural units, which are connected by 0 4 4; 1 square planes (Fig. 1). The other layers of

Figure 5

Structure map of ordered f.c.c. $A_x B_y$ alloys with s-CN values of A atoms as parameters and structural units a-y. The boundary of the structure map is outlined for r = y/x by differently dashed lines. The T_1 and T_2 values of the Johansson & Linde and Brauer (\bullet), Ketelaar (\times) and Forsyth & Gran families (+) and the [001] (\blacksquare) or [111] (\blacktriangle) layered structures are in different areas of the structure map.

the CuAu–UPb and AuCu₃–TiAl₃ parent structures do not fit together. The structural units of many structures on the righthand side of the structure map (Fig. 5) are connected by 2 0 4; 1 or 0 4 4; 1 square planes (Table 4*a*). The (theoretical) structures on the left-hand side of the structure map are connected by 6 6 6; (1) hexagonal planes (Hauck & Mika, 1994). Al₂ \Box_2 C₃ (*ac'*) (Ketelaar, 1935; Ketelaar *et al.*, 1947), Mo₃Al₈ (*gh*₂) (Forsyth & Gran, 1962), CuAu II (*yx*₉*y'x*₉') (Johansson & Linde, 1936) and ZrAl₃ (*v*₄*v*₄') (Brauer, 1939) are the first structures of the three structure families (Table 4*b*).

The AB₃ structures such as TiAl₃ $(u_2u'_2)$ or ZrAl₃ $(v_4v'_4)$ (Brauer, 1939) are obtained from u and v units and the AB structures such as $yx_0y'x'_0$ (CuAu II) (Johansson & Linde, 1936) from a combination of the x and y structural units. The structures with intermediate composition such as AB_2 are obtained by combination of u, v, x and y units [Table 4b, Fig. 3A(c), deposited]. The NaCl-related structures at the righthand border of the structure map contain vacancies in the structural units to approach Pauling's electrovalence rule such as u_2 for $\Box Nb_3 \Box O_3$ (NbO), $v' x u_2 x v'$ for $V_2 \Box_4 O_5 \Box$ ($V_2 O_5$), uxv'x'u' for Mo₂ \square O₃ (MoO₃), $u_2xv'_4xu_2$ for Nb₃ \square_7 FO₇ \square_2 (Nb_3O_7F) , xv'_2xu_2 for $Nb_2\Box_4O_5\Box$ $(R-Nb_2O_5)$ or the twodimensional shear structures of e.g. (Au,Zn)Cu₃, ZnAu₃ (Schubert, 1964; Sato & Toth, 1965), $(W_{0.2}V_{0.8})_9 \square_{16}O_{21}\square_4$ $[(W_{0.2}V_{0.8})_3O_7]$ or $Nb_{16}\Box_{33}O_{40}\Box_9$ (*M*-Nb₂O₅; Hyde & Andersson, 1989). The two-dimensional shear structures, however, are not at the border of the structure map and contain different structural elements [hatched areas in Fig. 3A(d), deposited]. Non-periodic antiphase boundaries in two dimensions were observed in ZnAu₃ (Teuho et al., 1987).

Some of the remaining observed structures (Table 4b) can be classified in a similar way to the three structure families of ordered b.c.c. structures (Table 2b). The square layers of A

Figure 6

 T_1, T_2 structure map of the p.c. lattice with [001] (**■**), [110] (**●**), [111] (**▲**) layered, ZnS related (×) and other (\circ) compounds in different areas.

atoms perpendicular to the drawing plane are separated by layers of B atoms in TiCd and CuZr₂ similar to γ -TiCu and (Table 2b). These MoSi₂ compounds with T_i values 8 4 8; 1 (TiCd) and 4 4 0; 2 (Cu Zr_2), which are not at the border of the f.c.c. structure map (\blacksquare) (Fig. 5), should be considered as distorted γ -TiCu or MoSi₂ with the same space groups and Pearson symbols. Most of the observed structures are at boundary lines for the given composition. The only exceptions in Table 4(b) are $\Box_4 \text{Co}_5 \text{Ge}_7$ and V_4Zn_5 , which should be reinvestigated after extended annealing to avoid a partial disorder which is inherent in all structures inside the structure map.

5. Primitive cubic lattice

The crystal structure of α -Po has a primitive-cubic (p.c.) structure (Galasso, 1970; Donohue, 1974). More important are the CaF₂ derivative structures (Fig. 3) (Müller, 1991; Juza et al., 1959). The Ca and F atoms form f.c.c. and p.c. structures, respectively, but only the F lattice is considered here. Some compounds with CaF₂ structure such as CeO₂, PrO₂ or TbO₂ can form oxygen-deficient structures, e.g. Pr_nO_{2n-2} , where n = 7, 9, 10, 11, 12, and some of the oxygen positions are vacant (Schweda et al., 1991; Zhang et al., 1993, 1996). 1995*a*,*b*, These compounds and the anions of PbO, PtS and Cu₂O can be described as p.c. compounds $A_{\rm x}B_{\rm y}$ with A = vacancy (\Box) and B = O or S and metal atoms Pb, Pt, Cu at Ca positions of CaF₂. The other compounds shown in Fig. 4A (deposited) are derived from the antifluorite structure of Li₂O with an ordered distribution of metal atoms such as β -Li₅Al \square_2O_4 (Stewner &

Table 4

(a) Cubic close-packed alloys $A_x B_y$ with single $T_i(A)$ and $T_i(B)$ values characterized by the s-CN values T_i of A atoms in a c.c.p. structure and in square planes (only occupied planes perpendicular to the direction with the highest symmetry are included), space group (SG), Pearson symbol (PS), No. of reduced cells (Table 2A, deposited) and positions of atoms A_2 - A_4 .

$T_i(A); y/x$	$T_i(A); y/x$						
c.c.p.	square	SG	PS	No.	A_2	A_3	A_4
12 6 24; (1)	4 4 4; (1)	225	cF4	1			
9 3 12; 1	6 6 6; (1)†	166	hR4	7	$1 \ 0 \ 1$		
(8 4 8; 1)‡	4 4 4; (1)	129	tP4	8	011		
(7 2 10; 1)‡	3 2 2; 1	11	mP8	43	011	$1 \ 0 \ 1$	$1 \bar{1} 2$
(6 2 12; 1a)	204;1	59	oP4	9	011		
(6 2 12; 1b)	2 0 4; 1	131	tP8	47	$0\bar{1}1$	101	112
(6 1 12; 1)	2 0 4; 1	11	mP8	41	011	103	002
6 0 12; 1a	2 0 4; 1	166	hR2	2			
6 0 12; 1b	204;1	227	cF32	53	$1 \ 1 \ 0$	011	101
(5 4 10; 1)	1 2 2; 1	11	mP8	48	121	$1 \ 0 \ 1$	011
(5 3 12; 1a)	3 2 2; 1	12	mC8	10	002		
(5 3 12; 1b)	2 2 2; 1	15	mC16	52	200	310	$1 0 \bar{1}$
5 2 14; 1	1 2 2; 1	15	mC16	51	$\overline{1} \ \overline{1} \ 2$	$\bar{1} 0 1$	$0 \bar{1} 1$
4 6 8; 1	4 4 4; (1)	123	tP2	3			
4 5 12; 1a	0 4 4; 1	74	<i>oI</i> 16	45	013	$0\bar{1}1$	002
4 4 16; 1	0 4 4; 1	141	tI8	13	$0\bar{1}1$		
4 2 12; 1.3a	2 2 2; 1.3†	2	aP7	34	$1 \bar{1} 0$	$0 \bar{1} 1$	
4 2 12; 1.3b	2 2 2; 1.3†	146	hR7	34	$1 \bar{2} 1$	$1 \bar{1} 0$	
3 3 12; 1.5	1 1 1; 1.5	12	mC10	18	$1 \ 0 \ 1$		
6 0 6; 2	6 6 6; (1)†	164	hP3	4			
(4 4 0; 2)‡	4 4 4; (1)	139	<i>tI</i> 6	5			
2 2 12; 2a	2 0 2; 2	71	<i>oI</i> 6	6			
2 2 12; 2b	0 6 0; 2†	151	hP9	62	$1 \bar{1} 0$	$1 \bar{2} \bar{1}$	
2 2 12; 2c	0 6 0; 2†	2	aP6	63	310	$2\bar{1}1$	
2 1 9: 2.5	1 1 1: 2.5†	2	aP7	34	$0\bar{1}1$		
0 6 0; 3	0 4 4; 1	221	cP4	12			
0 2 8: 4a	0 0 0 4: 4	87	<i>tI</i> 10	18			
0 0 6; 6	0 0 0 6; 6†	166	hR7	34			

† Hexagonal planar. ‡ On the borders of the T_2 T_2 T_3 ; y/x polyhedron.

(b) Structures and $T_i(A)$ values of $A_x B_y C_z$ alloys, and corresponding NaCl and ZnS derivative structures within different series of structural units and other structures [Figs. 3A(a)-(d), deposited, see text].

$A_x B_y C_z$		SG	PS	$T_i(A/B/C)$	NaCl derivative	ZnS derivative
Cu		225	cF4	12 6 24; (1)	NaCl	ZnS
α-Hg		166	hR1	12 6 24; (1)	NiO	
Al,Zn metast.		166	hR1	12 6 24; (1)		
Pr HP		152	hP6	12 6 24; (1)		
In		139	tI2	12 6 24; (1)	CoO	
γ-Mn		139	tI2	12 6 24; (1)		
α"-Ce I		12	mC2	12 6 24; (1)		
α"-Ce II		12	mC4	12 6 24; (1)		
Cf HP		2	aP4	12 6 24; (1)		
[110] structural	units <i>a–d</i> , <i>k</i> , <i>l</i> o	f Ketelaar	(1935), Ke	telaar <i>et al.</i> (1947) f	amily [Fig. 3A(a), de	posited]
CuPt,a	a	166	hR2	6 0 12; 1a	α -NaFeO ₂ ,	In(Ga,Al)P ₂
					Gd ₂ C,CdCl ₂	
CuPt,b	<i>l l'</i>	227	cF32	6 0 12; 1b	LiTbS ₂ ,	
					$Ti_2C_2ZrS_2$	
AB	$a_2 a'_2$	66	oC16	5 2 14; 1a	NaDyO ₂	
AB	$a_{3}a^{\tilde{\prime}}$	15	mC16	5 2 14; 1b	• -	
AB	bb'	67	oC16	5 3 14; 1		
UPb	aa'	141	tI8	4 4 16; 1	Pd ₂ D,Ti ₂ N	CuFeS ₂
AB	b	131	tP8	4 5 12; 1b	2 . 2	2
(Zn, Ga) ₃ Au ₅	bcb'c	72	oI32	2.7 3.3 10.7; 1.7		
A_3B_5	kk'	166	hR8	4 0 8; 1.7	Ti ₈ C ₅	
AB_2	ac'	12	mC12	3 0 10; 2b	AlCl ₃ ,Li ₂ SnO ₃	
AB_2	ac'a'c'	70	oF48	3 0 10; 2c	Sc ₂ S ₃ ,CrCl ₃	
AB_2	ca'	15	mC12	2 2 12; 2d	Li ₂ ZrO ₃ ,III	
AB_2	aca' c	70	oF48	2 2 12; 2f		
CuPt ₃	c'	65	oC8	2 0 4; 3	OsCl ₄ ,Tm ₃ Se ₄	
AB_3	ad'	15	mC16	2 0 8; 3a		
AB_{2}	adad'	15	mC32	2 0 8; 3b		

Table 4 (continued)							
$A_x B_y C_z$		SG	PS	$T_i(A/B/C)$	NaCl derivative	ZnS derivative	
AB_3	ad	13	mP8	2 0 8; 3e	$ZrCl_4$		
AB_3	cc'	69	oF32	1 2 6; 3			
TiAl ₃	с	139	tI8	0 4 8; 3	Nb ₄ N ₃ ,SnF ₄	SbCu ₃ S ₄	
AB_4	c'dc'd'	70	oF40	1 0 6; 4c			
AB_4	c'd	12	mC20	1 0 6; 4d	K_4UO_5		
AB_4	cdcd'	70	oF80	0 2 8; 4b			
AB_4	dc	15	mC20	0 2 8; 4c	M_4UO_5		
AB_5	dd'	70	oF48	0 0 8; 5a	Lu_5S_6		
AB_5	d	12	<i>mC</i> 12	0 0 8; 5e	$V_6C_5(I)$, Sc_5S_6 β -LicUQ		
					$p \operatorname{El}_6 \operatorname{CO}_6$		
[210] structural unit	s <i>e–i</i> of Forsyth	& Gran	(1962) fan	nily [Fig. 3A(b), dep	osited]		
UPb	eg	141	tI8	4 4 16; 1	Pd ₂ D,Ti ₂ N	$CuFeS_2, \alpha$ - $ZnCl_2$	
CuAu	f	123	tP2	4 6 8; 1		(Ga,As)(Al,As)	
NaHg	f	63	oC16	4 6 8; 1			
A_2B_3	eh	12	mC10	3 3 12; 1.5			
MoPt ₂	ef, g	71	<i>oI</i> 6	2 2 12; 2a	$\Box Ti_2 \Box O_2$	GeCu ₂ Se ₃	
AB_2	fh	12	mC12	2 4 6; 2			
AB_2	ei	12	mC12	3 2 8; 2			
Mn_2Au_5	gh	12	<i>mC</i> 14	1 3 10; 2.5		NiSi ₂ Cu ₄ S ₇	
A_2B_5	fi	12	<i>mC</i> 14	2 3 6; 2.5			
Mo_3Al_8	gh_2	12	mC22	0.7 3.3 9.3; 2.7			
AB_3	gi	12	mC16	1 2 10; 3			
TiAl ₃	h	139	tI8	0 4 8; 3	Nb_4N_3 , SnF_4	SbCu ₃ S ₄	
$A_{2}B_{7}$	hi	12	mC18	0 3 8; 3.5			
MoNi ₄	i	87	<i>tI</i> 10	0 2 8; 4a	$UF_5, Na_4 UO_5,$		
					Pd_5D_4, H_4O_5		
[001] structural units	s u-v of Johanss	on & Li	nde (1936)	and Brauer (1939)	family [Fig. 3A(c) d	eposited]	
UPb	xy'x'y	141	tI8	4 4 16; 1	γ-LiFeO ₂ ,	CuFeS ₂	
	5 5				Pd ₂ D,Ti ₂ N	2	
CuAu II	$v x_0 v' x_0'$	74	<i>oI</i> 40	4 5.6 9.6; 1	2 ' 2		
CuAu	<i>x</i>	123	tP2	4 6 8; 1		(Ga,As)(Al,As)	
NaHg	x	63	oC16	4 6 8: 1			
ZrSi ₂	uu'v'v'vv	63	oC12	2 4 8; 2a			
(Zr,Ål)(Si,Al) ₂	uu'x'vv'v'	141	tI24	2 4 8; 2b			
	u'uxv'vy						
ZrGa ₂	$v_2 y u_2 y$	65	oC12	2 5 4; 2a			
HfGa ₂	$u_2 y v_2 x'$	141	tI24	2 5 4; 2b			
2	$u_{2}^{2}y'v_{2}^{2}x$						
Nb ₅ Ga ₁₃	$uu_{2}^{\prime}uyvv_{2}^{\prime}v_{2}$	65	oC36	0.8 4 8; 2.6			
5 15	v ₂ vvuu ₂ u						
TiAl ₂	u_1u_2	139	tI8	0 4 8; 3	$Nb_4N_3.SnF_4$	SbCu ₂ S ₄	
ZrAl ₂	$v_{4}v_{4}'$	139	<i>tI</i> 16	0 5 4; 3	- 5	54	
CdAu ₃ II	$v_{4}v_{4}$	107	tI16	0 5 4; 3			
AuCu ₃	u ,	221	cP4	0 6 0; 3	$\Box Nb_3\Box O_3$,	\Box CdIn ₂ Se ₄	
SiU ₂ -tetr.	и	140	<i>tI</i> 16	0 6 0: 3	5 5.	2 4	
SiIr ₃	и	140	tI16	0 6 0; 3			
LT GaPt ₃	и	127	<i>tP</i> 16	0 6 0; 3			
SrPb ₃	и	123	tP4	0 6 0; 3			
CuTi ₃	и	123	tP4	0 6 0; 3			
SiU ₂ -orth.	и	69	oF32	0 6 0; 3			
GePt ₂	и	12	mC16	0 6 0; 3			
PdAuCu ₂	и	123	tP4	0 6 0: 3/			
2				0 6 0: 3/			
				4 6 8: 1			
ZnAu ₂	и	142	tI64	0 6 0: 3			
(TLPb)Pd ₂	и	139	tI24	0 6 0: 3			
α -PdCu ₂	и	123	tP28	0 6 0: 3			
(Pt,Zn)(Zn,Cu),	и	139	tI40	0 6 0; 3			
(Zn,Ga)Au	и	140	tI48	0 6 0; 3			
Ce ₂ Sn ₇	$u_A y v_A y$	65	oC20	1.3 5.3 2.7: 2.3			
Gd ₂ Sn ₇	u'uvv	65	oC20	1.3 4 8: 2.3			
	$v'_2 v y u$						
Ce ₂ Sn ₅	$v_6^{\overline{i}}y'u_6'y'$	65	oC28	1 5.5 2; 2.5			
I avered (001) etmos	ures						
CuAu	(AR)	122	tΡΛ	168.1		(Ga As)(Al As)	
CuZr	(AB)	120	11 4 tI6	4 4 0. 2		(Ga As)(A1 As)	
TiCd	(A,B_2)	120	tP4			(Ga As) (A1 As)	
1100	(212122)	141	*1 4	0 7 0, 1		(00,10)2(11,10)2	

Hoppe, 1971*a*), β -Li₅Ga \square_2O_4 (Stewner & Hoppe, 1971*b*), Li₅Tl \square_2O_4 (Hoppe & Panek, 1971) or Na₆Pb \squareO_4 (Panek & Hoppe, 1973).

There were 36 structures with a single environment T_i of A and a single environment T_i of Batoms $(M_i = 2, \S 2)$ obtained in the present investigation (Table 6a). The structure map of the p.c. lattice (Fig. 6) is similar to the structure map of CaTiO₃ related structures (Hauck & Mika, 1997, 2000a), but different from the structure maps of the square, b.c.c. or f.c.c. lattice (Figs. 2, 4 and 5). The maximum range of the Cowley short-range order parameters α_i (*i* = 1–3) is obtained for a tetrahedron with the four structures 0 12 0; 1, 2 4 8; 1, 4 4 0; 1 and 6 12 8; (1) at the corners. A 3 0 T_3 ; 1 structure $(\alpha_1 = 0, \alpha_2 = -1)$ for covalent bonding is impossible in the p.c. lattice. The lowest $T_2 = 4$ value is obtained in PbDO (4 4 0; 1) and Pt□S (2 4 8; 1) with y/x = 1. At y/x = 3, $T_2 = 0$ is reached in $Si\Box_3S_2$ (2 0 0; 3) and $Cu_2\Box_3O$ $(0\ 0\ 8; 3)$. The highest $T_2 = 12$ value in ZnS (0 12 0; 1) indicates a repulsion of Zn atoms. The s-CN values T_1 and T_2 give the numbers of ZnS₄ tetrahedra, which are linked by edges and corners, respectively. In the f.c.c. system T_1 was the number of linked corners; a connection by edges is not allowed in the f.c.c. system (§4). The combination of structural units at the boundary of the structure map was outlined in some detail (Hauck & Mika, 1997, 2000a).

Most observed structures are within two structure series of (110) layered structures and the ZnS family (Tables 6b and c). The ZnS (sphalerite) related structures are listed already in Table 4(b) because of the two f.c.c. lattices of Zn and S atoms with a translation of $a_0/4$, $a_0/4$, $a_0/4$. Many structures can be considered as combinations of

Table 4 (continu	ed)					
$A_x B_y C_z$		SG	PS	$T_i(A/B/C)$	NaCl derivative	ZnS derivative
Layered (111) struct	tures					
CuPt, a	(AB)	166	hR2	6 0 12; 1a	α-NaFeO ₂	In(Ga,Al)P ₂
ZnAl ₂	(AB_2)	164	hP3	6 0 6; 2	In ₂ S ₃	(, , 2
AB	$(A_2\tilde{B}_2)$	166	hR4	9 3 12; 1		
CuAu (CsCl) related	d structures in [001] pro	jection wit	h composition of Cu	ı/Au layer	
Ti ₂ Ga ₃	$A_A B/B_5$	83	tP10	3 5 6; 1.5	5	
AB_3	AB/B_2	65	oC4	2 2 4; 3a		
PdČu₄	$A_{2}B_{3}/B_{5}$	84	<i>tP</i> 20	1 1 4; 4		
$\Box_4 Co_5 Ge_7$	$B_5C_3/$	107	tI24	2 2 4; 3/		
- 5 /	$A_A C_A$			1.6 4.8 3.2; 2.2/		
				4.6 2.7 9.1; 1.3		
CuPt (CsCl) related	structures in [1	11] proj	ection with	composition of Cu	Pt layer	
AB_2	A_2B/B_3	15	mC24	3 0 10; 2a	TiCl ₃ ,	
2	2/3				β -Na ₂ PtO ₂	
AB_5	AB_2/B_3	151	hP18	0 0 8; 5f	$V_{\epsilon}C_{\epsilon}(II),$	
5	2, 5				Li ₅ ReO ₆	
AB_5	AB_2/B_3	15	mC24	0 0 8; 5b	$V_6C_5(III)$	
AB_5	AB_2/B_3	12	<i>mC</i> 12	0 0 8; 5e	$\Box Sc_5 S_6$	
Other compounds						
AB		59	oP4	6 2 12; 1a		
AB		131	tP8	6 2 12; 1b		
AB_2		151	hP9	2 2 12; 2e		β -Ga ₂ Se ₃
AB_{3}		63	oC16	2 2 4; 3b		. 2 5
AB_3		15	mC32	2 0 8; 3d	$Hf I_4$	
AB_4		14	mP20	1 0 7; 4a	UCl ₅	
AB_7		212	cP32	0 0 6; 7	V_8C_7	
V_4Zn_5		139	tI18	5 4 6; 1.25		
Mn ₇ Pd ₉		139	tI32	3.4 5.1 6.9; 1.3		
Zn_3Au_5		72	oI128	2.7 3.7 9.3; 1.7		
Ga ₃ Pt ₅		65	oC16	2.7 4.7 5.3; 1.7		
$Mn_{11}Pd_{21}$		123	tP32	2.2 4.4 4.4; 1.9		
Mn ₉ Au ₃₁		83	tP40	0 3.3 7.1; 3.4		
GeCa ₇ ,CuPt ₇		225	cF32	0 0 0 12; 7		
TiPt ₈		139	<i>tI</i> 18	0 2 0; 8		

Table 5

s-CN values of some homologous series of f.c.c. derivative structures with different r and k values (see text).

<i>r</i> *	k	$T_i(\mathbf{A})$	Prototype
2	2	2 2 12; 2a	MoPt ₂
2	1	7 4 18; 0.5a	Pt_2Mo
2	0	12 6 24; 0	Cu
3	3	0 6 0; 3	AuCu ₃
3	2	4 6 8; 1	AuCu
3	1	8 6 16; 0.33	Cu ₃ Au
3	0	12 6 24; 0	Cu
4	4	0 2 8; 4	MoNi ₄
4	3	3 3 12; 1.5	-
4	2	6 4 16; 0.67	
4	1	9 5 20; 0.25	Ni₄Mo
4	0	12 6 24; 0	Cu

SbCu₃S₄ (TiAl₃ \square_4), which is 0 0 0 4; 7b in the CaF₂ system (Table 6b; Hauck & Mika, 1998a). The f.c.c. lattices of the Zn or S atoms in ZnS or of Mg, Ag, As or vacancies \square in MgAg \square As [Fig. 4A(*a*), deposited (or \square NZnLi) can be combined in different ways to obtain the p.c. lattice [6 12 8; (1)] for Mg + Ag or \square + As combinations or the b.c.c. lattice for the Mg + Ag + As combination.

6. Conclusions

The present paper shows how the architecture of ordered body-centered, face-centered and primitive cubic structures/ compounds can be analyzed using square planes. The crystal structures of $A_{x}B_{y}$ compounds are characterized by the selfcoordination numbers (s-CN) of the nearest (T_1) , next-nearest (T_2) and third-nearest (T_3) neighbors and the composition y/x of the compound. The s-CN values are plotted in T_1 , T_2 or α_1, α_2 structure maps where α_i are short-range order parameters, which are related to the T_i values as outlined in §1, step (vi). Structures found at the corners of these structure maps (Figs. 2 and 4-6) usually have high symmetry and the same T_1 T_2 T_3 ; y/x values for all A and for all B atoms. These structures can be decomposed into smaller structural units, e.g. v, v' and w', to construct structures that lie along the edges of the structure map and which can be characterized by sequences of structural units as e.g. $vw'v'_2w'v$

for the Ruddlesden–Popper phase Sr_2TiO_4 with w'_2 (SrO) and v_2 or v'_2 (CaTiO₃) as structural units (Hauck & Mika, 1997, 1998b; Parthé *et al.*, 1993).

We could identify approximately 55 structural units in b.c.c. and \sim 25 structural units in f.c.c. alloys. Most of the experimental structures are in six different families of crystal structures, which are named after the pioneers, *e.g.* the Ruddlesden–Popper phases. The structural units have identical square or in a few cases hexagonal planes which combine in different ways similar to a puzzle to give the different structures.

Most of the observed structures are at the right-hand border of the structure maps with low T_1 . The interactions between Aatoms vary continuously from attractive at low T_2 to repulsive at high T_2 values for different $A_x B_y$ structures on the righthand borders of the structure maps. The weakest interactions are found at the intersection with the line between $T_1 = T_2 = 0$ and T_1^{max} , T_2^{max} ($\alpha_1 = \alpha_2$).

Most structures with a single set of $T_i(A)$ values in Tables 2(a) and 4(a), and some structures in Table 6(a) are closely related, because they have identical space groups and Pearson symbols, but different distortions (§4). Structures with identical T_1 values can belong to the same type of homogeneous sphere packing of A atoms (Koch & Fischer, 1992). The

density $\rho_0 = 0.74$ of the f.c.c. Cu structure (type 2) for example is reduced to $\rho/\rho_0 =$ x/(x + y) in $A_x B_y$ with vacant B positions. For structures on the left-hand borders of the structure maps containing alternating layers of A and B atoms, the packings of A atoms are not stable if the B atoms are removed. The group-subgroup relations (Bärnighausen, 1980; Müller, 1997), which can be arranged for the b.c.c., f.c.c. and p.c. systems (Tables 2-6 and 1A-3A, deposited), allow few space groups. In some structures with different space groups such as 4 2 2; 2a (Table 2a), 2 2 12; 2a (Table 4*a*) and 2 2 4; 2a (Table 6*a*) the projections of the crystal structure in the [111] direction are identical, but different in other directions. The Pearson symbol and sometimes also the space group will change in NaCl, ZnS or CaF₂ derivative structures, if all atom positions are included, or on vacancy formation. In some cases the structures of $A_{\rm x}B_{\rm y}$ compounds can only be compared with the ordering of e.g. anions in NaCl or CaF_2 derivative structures as *e.g.* $\Box Nb_3 \Box O_3$ or $Pr_7 \Box_2 O_{12}$, if the location of the cations relative to the vacancies \Box is added as additional information.

The position of a compound $A_x B_y$ in the structure map can be different, as is outlined for the layered [001] and [111] structural series in Figs. 4-6. The formation of layered (001) (Schubert family) and (111) (Zalkin & Ramsey family) compounds with different compositions of the structural units in the b.c.c. system seems to be the consequence of the fact that most other series of structural units are not at the right-hand border of the structure map, as shown in Figs. 4A(a)-(d) (deposited) and 4. In the 0 6 12; 1 CsCl structure with an alternation of Cs and Cl atoms in the [001] or [111] direction, the Cs atoms are as far apart as possible with no nearest neighbor. A similar situation occurs in the 0 12 0; 1 ZnS structure of the p.c. lattice (Fig. 6), but not for the 4 6 8; 1 CuAu structure in the f.c.c. lattice with $T_1 = 4$ nearest Cu neighbors of Cu atoms (Fig. 5). Attractive interactions between A = Na, Cu, \Box (or B = Tl, Pt, S) atoms are suggested for 4 0 12; 1 NaTl (Fig. 4) with the s-CN of 4 nearest and 0 next-nearest neighbors, the homometric 6 0 12; 1a,b CuPt a,b structures in the f.c.c. system (Fig. 5) and

Table 6

(a) s-CN values of theoretical primitive cubic alloys $A_x B_y$ with single $T_i(A)$ and $T_i(B)$ values $(M^i = 2, \S 2), T_i(A)$ values of square planes perpendicular to the direction of highest symmetry, space group SG (A and B atoms) and Pearson symbol (PS), No. of reduced cell (Table 3A, deposited) and positions of atoms A_2 - A_8 .

$T_i(A); y/x$	$T_i(A); y/x$	80	DC	No	A_2	A_3	A_4	4
p.c.	Square	30	P3	INO.	A_6	A_7	A_8	A_5
6 12 8; (1)	4 4 4; (1)	221	cP1	1				
584;1	4 4 4; (1)	123	tP4	8	$0\ 0\ 1$			
(4 6 4; 1a)†	2 2 0; 1a	51	oP4	9	$0 \ 0 \ 1$			
(4 6 4; 1b)† ∫	2 2 0; 1b	123	tP8	45	011	$0\ 0\ 1$	012	
(4 5 2; 1)†	2 1 2; 1	10	mP8	46	012	$0\ 0\ 1$	002	
4 4 0; 1	4 4 4; (1)	123	tP2	2				
(3 6 4; 1a)	6 6 6; (1)‡	166	hR12	12	$1 \ 0 \ 0$			
(3 6 4; 1b)	2 2 0; 1a	63	oC16	54	111	$1 \ 0 \ 0$	$1 \ 0 \ 1$	
(3 6 4; 1c)	2 2 0; 1b	225	cF64	77	011	$1 \ 0 \ 1$	$1 \ 1 \ 0$	111
}					122	212	221	
(3 6 4; 1d)	2 2 0; 1b	160	hR48	77	011	$1 \ 0 \ 1$	$1\ 1\ 0$	111
					122	212	223	
(3 6 4; 1e)	2 2 0; 1b	141	tI32	77	011	101	110	111
		_			122	223	232	
(3 5 4; 1a)	2 1 2; 1	2	aP8	58	110	121	120	
(3 5 4; 1b)	2 1 2; 1	5	mC32	76	011	012	001	111
				-	112	101	111	
(3 5 4; 1c)	2 1 2; 1	2	<i>aP</i> 16	76	012	002	012	111
(a - 1 - 1 -)		12	EC.	= (112	101	111	
(3 5 4; 1d)	2 1 2; 1	43	<i>oF</i> 64	/6	011	012	012	111
(224.1)		15	622	= (112	101	111	
(3 5 4; 1e)	2 1 2; 1	15	mC32	/6	012	001	002	111
(2 5 4, 16)	2 1 2 1	10	C22	70	112	101		1 1 1
(3 5 4; 11) J	2 1 2; 1	12	<i>mC32</i>	/0	021	002	012	111
2 4 4, 1 0)	2 2 2, 1	65	- 69	11	112	101	111	
5 4 4; 1a	$5 \angle 2; 1$	0.5	008	11 61	001	010	101	
$(2 \in 4, 10)$	204;1	141 62	<i>u</i> 10	01	001	010	101	
$(2 \ 0 \ 4; 1a) $	2 2 0; 18	120	0C8 +116	15	101	110	211	
$(2 \ 0 \ 4; \ 10)$	2 2 0; 10 2 1 2; 1	139	1110 mC16	02 57	101	011		
(2 5 0, 1)	2 1 2, 1 0 4 4; 1	12	+D2	2	012	011	101	
2 4 0, 1 1 8 <i>1</i> · 1	044, 1 044: 1	123	11 Z + PA	14	001			
1 0 4, 1 0 12 0 1	044, 1 044: 1	225	cF8	14	001			
$(2 4 4 \cdot 1 3 2) +]$	2 2 2 1 3 +	146	hR21	40	010	110		
(2 + 4, 1.3a)	2 2 2, 1.3 + $2 2 2 \cdot 1 3 +$	2	aP7	40	111	110		
(2 + 4, 1.50)	2 2 2, 1.5 + 1 1 1 1 1 5	10	mP5	10	0.0.1	110		
<i>4 4</i> 0: 2	202.2	10	tP3	5	001			
224.29	0202, 2	51	0P3	6				
2 2 4 2h	0.20, 2	151	hP9	75	010	110		
2 2 1, 20 J	0.6.0, 2	2	aP9	74	112	$12\bar{2}$		
062.2	$666; (1)^{+}$	164	hP3	7	112	122		
$(1 2 3 2 5)^{\dagger}$	1 1 1 2.5	2	aP7	, 40	010			
0.08.3	0.04:3	229	cI8	16	010			
200.4	$0 0 0 4 \cdot 4$	83	tP5	19				
0 0 2: 6	0006.6	148	hR21	40				
, -	000,0	10						

[†] On the borders of the $T_1T_2T_3$; y/x polyhedron. [‡] Hexagonal planar.

(b) Different series of structures and $T_i(\Box)$ values of $M_x \Box_y O_z$ or CaF₂ derivative structures with a sequence of layers such as $A = \Box$, B = O in Pb $\Box O$ structure, space group SG and Pearson symbol PS for all atoms without vacancy position \Box (Fig. 4A, deposited).

$M_x \square_y \mathbf{O}_z$		SG	PS	$T_i(\Box)$
CaF ₂		225	<i>cF</i> 12	6 12 8; (1)
EuŐF		166	hR9	6 12 8; (1)
γ -LaOF, ZrH ₂ ,		123	<i>tP</i> 12	6 12 8; (1)
SiPt ₂				
Layered (001) st	tructures			
Pb□O	AB	129	tP4	4 4 0; 1
$M_3 \square_2 O_4$	AB_2	139	<i>tI</i> 14	4 4 0; 2
$M_2 \square O_3$	AB_3	129	<i>tP</i> 10	4 4 0; 3
M□O	$A_2 \tilde{B}_2$	123	tP8	584;1
$M_3 \square_2 O_4$	$ABAB_3$	129	<i>tP</i> 14	4 4 0; 2
M□Õ	ABA_2B_2	99	<i>tP</i> 12	4.7 6.7 2.7; 1

Table 6 (continued)

Tuble 0 (continued)						
$M_x \square_y \mathbf{O}_z$		SG	PS	$T_i(\Box)$		
Layered (111) str	uctures					
M□O	AB	160	hR6	484;1		
$M_3 \square_2 O_4$	AB_2	164	hP7	0 6 2; 2		
$M_2 \square O_3$	AB_3	160	hR15	0 8 0; 3		
M _□ O	$A_2 \tilde{B}_2$	166	hR12	364; 1a		
$M_3 \square_2 O_4$	$ABAB_3$	156	hP7	3 6 3; 2		
M□O	ABA_2B_2	156	hP6	2 8 3.3; 1		
Layered (110) str	uctures with different comp	position $A = MO_2, A' = A$	M_3O_6 ,			
$A'' = M_4 O_8, B =$	$M \square_2, C = M \square O, D = M_3 \square O$	$O_5, E = M_4 \square O_7, F = M_7 \square O_7$	$\square_2 \mathbf{O}_{12},$			
$G = M_{11} \square_2 O_{20}$ (T	Thornber & Bevan, 1970)					
Pt□S	AB	131	tP4	2 4 8; 1		
$M_3 \square_2 O_4$	AB_2	65	oC6	2 2 4; 2a		
$M_2 \square O_3$	AB_3	47	oP4	2 2 4; 3		
M□O	$A_2 B_2$	51	oP4	4 6 4; 1a		
$M_3 \square_2 O_4$	$ABAB_3$	47	oP6	2 3 6; 2		
$M\Box O$	ABA_2B_2	25	oP6	3.3 5.3 5.3; 1		
$Cu_2 \square_3 O$	BC	224/201	cP6	0 0 8; 3		
$Pr_7 \square_2 O_{12}$	F	148	hR57	0 0 2; 6		
$Pr_9\square_2O_{16}$	$A'D_2$	2	aP25	0 0 1; 8		
$(Ce_{21} \Box_4 O_{38})$	$A'DA'D_2A'D$					
$(Ce_{19}\Box_4O_{34})$	$A'D(A'D_2)_3A'D(A'L$	$(p_2)_2$				
	or $A''E_5A''E_6A''E_5$					
$Pr_{10}\square_2O_{18}$	$A''E_4$	11	mP112	0 0 1; 9		
$Pr_{12}\square_2O_{22}$	$A''E_2$	11	mP68	0 0 0 0 3; 11		
$Tb_{11}\square_2O_{20}$	G	2	aP31	0 0 0 0 4; 10		

(c) ZnS family and other $A_x B_y C_z$ structures with $T_i(A/B)$

	x y 2		
$A_x B_y C_z$	SG	PS	$T_i(A/B)$
ZnS family			
Zn⊐S	216	cF8	0 12 0; 1
MgAg□As	216	cF12	0 12 0; 1
□NZnLi	216	cF12	0 12 0; 1
$\Box CdIn_2Se_4$	111	tP7	0 0 0; 7a
SbCu ₃ S ₄	121	<i>tI</i> 16	0 0 0; 7b
CuFeS ₂	122	<i>tI</i> 16	0 4 0; 3b
α -Zn \Box_3 Cl ₂	122	<i>tI</i> 12	0 4 0; 3b
(Ga,As)(Al,As)	115	tP4	0 4 0; 3c
In(Ga,Al)P ₂	160	hR4	0 6 0; 3
GeCu ₂ Se ₃	44	<i>oI</i> 12	0 2 0; 5a
β - \Box Ga ₂ Se ₃	9	mC20	0 2 0; 5e
NiSi ₂ Cu ₄ S ₇	5	mC28	0 1 0; 6
$(Ga, As)_2(Al, As)_2$	115	tP8	0 8 0; 3
$(Ga,As)(Al,As)_2$	119	tI12	0 4 0; 5
Other compounds			
Si□ ₃ S ₂	72	oI12	2 0 0; 3
Li ₃ AlN ₂	206	<i>cI</i> 96	0 3 2; 3
$(Fe, Mn)_2 \square O_3$	206	cI80	0 3 2; 3
Hg□ ₃ I ₂	137	<i>tP</i> 12	0 4 0; 3a
$Sn\square_7I_4$	205	cP40	0 0 1; 7
Li ₇ VN ₄	218	<i>cP</i> 96	0 0 0 1.5; 7
β -Li ₅ Al \square_2O_4	59	oP20	0 0 0 2; 7/
			0 2 4; 3
β -Li ₅ Ga \square_2O_4	21	oC40	0 0 0 2; 7/
			0 0 8 6; 3
$Li_5Tl \square_2O_4$	137	tP80	0 0 0 4; 7/
			0 5 0; 3
$Na_6Pb\Box O_4$	217	cI88	0 3 0 0; 7 (Pb,□)
-			

Cu₃Au (8 6 16; 0.3), Cu [12 6 24; (1)] with $T_1 = 0, 4, 8, 12, T_2 = 6$ and $T_3 = 0, 8,$ 16, 24 (Table 5) and identical α_i values. In quasi-homologous series of structures (different α_i values) the different combinations of the 0 0 12; 3 structure of Sn, Mg, Li and Pd atoms in SnMgLiPd give rise to the AgSbLi₂, AlMnCu₂ and NaTl structures [Table 2*b*, Fig. 2A(*a*) deposited] with different α_i values.

A similar situation occurs for magnetic structures (Oleś et al., 1976) with an ordering of two spin directions \oplus and \ominus at Mn atoms in MnS₂ or MnTe₂, where the ordering for example follows the UPb \square_4 type (4 4 16; 1) or the CuAu \square_4 type (4 6 8; 1) structures and MnSe₂ has a structure with intermediate T_i values 4 4.7 13.3; 1. The four spin directions of the Dy atoms in DyAlO₃ are combined in the same way as the four atoms in a quaternary alloy such as SnMgLiPd (Hauck & Mika, 2000c). The ordering of magnetic moments in the same structures as the ordering of metal atoms in alloys supports a different view of sphere packing, which has been discussed for many centuries (Brunner, 1971), e.g. the statement of Boscovich (1758): 'Atoms are centres of interactions whose diameters are negligible or of minor interest as compared to their separations'.

The principle of filling sites in a given structure is similar to the way we obtained the different structures. We determined the reduced unit cells with single occupation (Tables 1A-3A deposited) and obtained all structures of the structure maps by occupation of other positions. The observed structures of the homologous and quasi-homologous series are a small selection, where α_i values do not change or change only along the boundary of the structure map, respectively. These structures with maximum attractive or repulsive interactions between A (or B) atoms are stabilized by enthalpy.

the 2 4 8; 1 Pt \square S structure (Fig. 4A, deposited) in the p.c. system.

Two other principles of structure formation besides the combinations of structural units were observed in the present investigation: A stepwise filling of atom positions in homologous structures such as $AuCu_3$ (0 6 0; 3), AuCu (4 6 8; 1),

We acknowledge the support of K. Bickmann and D. Henkel, IFF with the preparation of the figures and the text.

References

Allen, S. M. & Cahn, J. W. (1972). Acta Metall. 20, 423-433.

- Bärnighausen, H. (1980). MATCH, Commun. Math. Chem. 9, 139– 175.
- Brauer, G. (1939). Z. Anorg. Allg. Chem. 242, 1-22.
- Brunner, G. O. (1971). Acta Cryst. A27, 388-390.
- Burdett, J. K. (1995). *Chemical Bonding in Solids*. Oxford University Press.
- Chattopadhyay, K., Lele, S., Thangaraj, N. & Ranganathan, S. (1987). *Acta Metall.* **35**, 727–733.
- Donohue, J. (1974). *The Structures of the Elements*. New York: John Wiley.
- Ducastelle, F. (1991). *Cohesion and Structure*, Vol. 3, *Order and Phase Stability in Alloys*, edited by F. R. de Boer and D. G. Pettifor. Amsterdam: North-Holland.
- Finel, A. & Ducastelle, F. (1984). Mater. Res. Soc. Symp. Proc. 21, 293–298.
- Forsyth, J. B. & Gran, G. (1962). Acta Cryst. 15, 100-104.
- Galasso, F. S. (1970). *Structure and Properties of Inorganic Solids*. Oxford: Pergamon Press.
- Hauck, J. (1980). Acta Cryst. A36, 228-237.
- Hauck, J., Henkel, D., Klein, M. & Mika, K. (1999). J. Solid State Chem. 145, 150–158.
- Hauck, J., Henkel, D. & Mika, K. (1988a). *Physica C*, **153–155**, 1173–1174.
- Hauck, J., Henkel, D. & Mika, K. (1988b). Z. Phys. B, 71, 187-192.
- Hauck, J., Henkel, D. & Mika, K. (1988c). Z. Kristallogr. 182, 124–127.
- Hauck, J., Henkel, D. & Mika, K. (1988d). Z. Kristallogr. 182, 297– 306.
- Hauck, J., Henkel, D. & Mika, K. (1989). *Int. J. Mod. Phys. B*, **3**, 1425–1433.
- Hauck, J. & Mika, K. (1993). Int. J. Mod. Phys. B, 7, 3423-3433.
- Hauck, J. & Mika, K. (1994). Intermetallic Compounds, Vol. 1, Principles, edited by J. H. Westbrook and R. L. Fleischer, pp. 277– 307. London: Wiley.
- Hauck, J. & Mika, K. (1997). Studies of High Temperature Superconductors, Vol. 25, edited by A. V. Narlikar, pp. 1–74. Commack New York: Nova Science.
- Hauck, J. & Mika, K. (1998a). J. Solid State Chem. 138, 334-341.
- Hauck, J. & Mika, K. (1998b). Supercond. Sci. Technol. 11, 614-630.
- Hauck, J. & Mika, K. (2000a). Solid State Ion. 127, 1-21.
- Hauck, J. & Mika, K. (2000b). Surface Rev. Lett. In the press.
- Hauck, J. & Mika, K. (2000c). J. Magn. Magn. Mater. 212, 389-400.
- Ho, S.-M. & Douglas, B. E. (1968). J. Chem. Educ. 45, 474–476.
- Hoppe, R. & Panek, P. (1971). Z. Anorg. Allg. Chem. 381, 129–139. Hyde, B. G. & Andersson, S. (1989). Inorganic Crystal Structures. New York: Wiley.
- Johansson, C. H. & Linde, J. O. (1936). Ann. Physik, 25, 1-48.
- Juza, R., Gieren, W. & Haug, J. (1959). Z. Anorg. Allg. Chem. 300, 61– 71.
- Kanamori, J. & Kakehashi, Y. (1977). J. Phys. Colloque 7, 274-279.
- Ketelaar, J. A. A. (1935). Z. Kristallogr. A, 90, 237-255.
- Ketelaar, J. A. A., MacGillavry, C. H. & Renes, P. A. (1947). Rec. Trav. Chim. Pays-Bas, 66, 501–512.
- Koch, E. & Fischer, W. (1992). International Tables for Crystallography, edited by A. J. C. Wilson, Vol. C, pp. 654–659. Dordrecht: Kluwer Academic Publishers.
- Kripyakevich, P. I. & Grin, Yu. N. (1979). Sov. Phys. Crystallogr. 24, 41–44.
- Křivý, I. & Gruber, B. (1976). Acta Cryst. A32, 297-298.
- MacLaren, J. M., Pendry, J. B., Rous, P. J., Saldin, D. K., Somorjai, G. A., Van Hove, M. A. & Vvedensky, D. D. (1987). Surface Crystallographic Information Service: A Handbook of Surface Structures. Dordrecht: Reidel.

- Mika, K., Hauck, J. & Funk-Kath, U. (1994). J. Appl. Cryst. 27, 1052– 1055.
- Mika, K., Henkel, D. & Hauck, J. (1989). Z. Kristallogr. 186, 202–204.
- Müller, U. (1991). Anorganische Strukturchemie. Stuttgart: Teubner.
- Müller, U. (1997). *Predictability of Crystal Structures of Inorganic Solids*, edited by H. Burzlaff, pp. 74–81. Hünfeld 27.10–30.10. To be published.
- Oleś, A., Kajzar, F., Kucab, M. & Sikora, W. (1976). *Magnetic Structures by Neutron Diffraction*. Warszawa: Państwowe Wydawnictwo Nakowe.
- Panek, P. & Hoppe, R. (1973). Z. Anorg. Allg. Chem. 400, 208–218.
- Pani, M. & Fornasini, M. L. (1990). Z. Kristallogr. 190, 127-133.
- Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K. & Gladyshevskii, R. (1993). *TYPIX: Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types*, Vol. 1, *Gmelin Handbook of Inorganic and Organometallic Chemistry*. Berlin: Springer.
- Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.
- Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca, New York: Cornell University Press.
- Pearson, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys. New York: Wiley.
- Sanchez, J. M. & de Fontaine, D. (1981). Structure and Bonding in Crystals, Vol. II, edited by M. O'Keeffe and A. Navrotsky, pp. 117– 132. New York: Academic Press.
- Sato, H. & Toth, R. S. (1965). Metallur. Soc. Conf. 29, 295-419.
- Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen. Berlin: Springer.
- Schubert, K., Anantharaman, T. R., Ata, H. O. K., Meissner, H. G., Pötzschke, M., Rossteutscher, W. & Stolz, E. (1960). *Die Naturwiss.* 47, 512.
- Schubert, K., Meissner, H. G. & Rossteutscher, W. (1964). Die Naturwiss. 51, 507.
- Schweda, E., Bevan, D. J. M. & Eyring, L. (1991). J. Solid State Chem. 90, 109–125.
- Sohncke, L. (1879). Entwicklung einer Theorie der Kristallstruktur, p. 23. Leipzig: B. G. Teubner.
- Stewner, F. & Hoppe, R. (1971a). Z. Anorg. Allg. Chem. 381, 140–148.
- Stewner, F. & Hoppe, R. (1971b). Z. Anorg. Allg. Chem. 381, 149–160.
- Teuho, J., Mäki, J. & Hiraga, K. (1987). Acta Metall. 35, 721-725.
- Thornber, M. R. & Bevan, D. J. M. (1970). J. Solid State Chem. 1, 536–544.
- Villars, P. & Calvert, L. D. (1986). *Pearson's Handbook of Crystallographic Data for Intermetallic Phases*, Vols. 1–3. Metals Park, OH: American Society for Metals.
- Wiener, C. (1863). *Die Grundzüge der Weltordnung. I: Atomlehre*, p. 82. Leipzig und Heidelberg: Winter.
- Wyckoff, R. W. G. (1982). Crystal Structures, Vols. 1–3. Krieger: Malabar, FL.
- Zalkin, A. & Ramsey, W. J. (1956). J. Phys. Chem. 60, 234-236.
- Zalkin, A., Ramsey, W. J. & Templeton, D. H. (1956). *J. Phys. Chem.* **60**, 1275–1277.
- Zhang, J., Von Dreele, R. B. & Eyring, L. (1993). *J. Solid State Chem.* **104**, 21–32.
- Zhang, J., Von Dreele, R. B. & Eyring, L. (1995*a*). *J. Solid State Chem.* **118**, 133–140.
- Zhang, J., Von Dreele, R. B. & Eyring, L. (1995*b*). *J. Solid State Chem.* **118**, 141–147.
- Zhang, J., Von Dreele, R. B. & Eyring, L. (1996). J. Solid State Chem. **122**, 53–58.