Structural

Science

ISSN 0108-7681

J. Hauck* and K. Mika

Institut für Festkörperforschung, Forschungszentrum Jülich, D-52425 Jülich, Germany

Correspondence e-mail: j.hauck@fz-juelich.de
(C) 2000 International Union of Crystallography Printed in Great Britain - all rights reserved

Architecture of crystal structures from square planes

The crystal structures of ordered b.c.c. (body-centered cubic), f.c.c. (face-centered cubic) or primitive cubic alloys $A_{x} B_{y}$ and related $\mathrm{NaCl}, \mathrm{ZnS}$ or CaF_{2} derivative structures are characterized by the self-coordination numbers T_{1}, T_{2} of the A atoms with A atoms. Structures with identical T_{1} and T_{2} values for all A atoms are at the corners of T_{1} and T_{2} structure maps, and can be analyzed for attractive or repulsive interactions of A atoms. Most observed structures are at the borders of the structure map and can be obtained by ~ 10 different combinations of structural units. The different combination mechanisms explain e.g. the shear structures of CuAu II or $\mathrm{Nb}_{2} \mathrm{O}_{5}$ and the occurrence of vacancies in NaCl -related structures like NbO .

1. Introduction

A large number of crystal structures can be described as ordered body-centered cubic (b.c.c.), face-centered cubic (f.c.c.) or primitive cubic (p.c.) compounds $A_{x} B_{y}$ or as NaCl , ZnS or CaF_{2} derivative structures (Villars \& Calvert, 1986; Parthé et al., 1993) with a distribution of A and B atoms on different positions. The number of observed structures is small compared with the number of all possible structures, which is 2^{n-1} for a unit cell with n possible positions of A or B atoms. All reduced unit cells of the b.c.c., f.c.c. and p.c. lattice with $n \leq 9$ atom positions were determined and the different structures selected numerically in the present investigation. The theoretical structures can be sorted for different aspects such as high symmetry, single coordination numbers or the extent to which Pauling's rules (Pauling, 1929) are obeyed. Pauling's rule of parsimony is particularly useful for the selection: 'The number of essentially different kinds of constituents in a crystal tends to be small'. The polyhedra circumscribed about all chemically identical atoms should, if possible, be chemically similar and similar in the nature of the sharing of corners, edges and faces with other polyhedra. This explanation is similar to the Wiener-Sohncke principle: 'Points are disposed around each point in the same way as around every other' (Wiener, 1863; Sohncke, 1879; Brunner, 1971). We have selected the self-coordination numbers (s-CN) of A atoms with A atoms as parameters to characterize these structures ($\S 2$). Table 1 shows the maximum s-CN values $T_{i}^{\max }$ for coordination shells $i=1-10$ for a variety of structures, which can be obtained from the square lattice. The maximum values are reduced if some of these positions are occupied by B atoms in $A_{x} B_{y}$ (Fig. 1). A large number of possible structures can be characterized by these T_{i} values and homometric structures (structures with identical T_{i} values, §3) can be

Received 1 May 1998
Accepted 27 April 2000
differentiated by different space groups. The T_{i} values can be plotted in T_{1}, T_{2} structure maps such as those shown in Fig. 2.

The large variety of orderings of atoms in $A_{x} B_{y}$ is characterized by the number of nearest, next-nearest and thirdnearest neighbors of A atoms, T_{1}, T_{2} and T_{3}, and the ratio of A and B atoms $y / x \geq 1$. The $T_{1} T_{2} T_{3} ; y / x$ values of the minority component A are sufficient to characterize an undistorted structure. The self-coordination numbers T_{1}, T_{2} and T_{3} of the A atoms with A atoms in $A_{x} B_{y}$ compounds can be plotted to create a T_{1}, T_{2} or T_{1}, T_{2}, T_{3} structure map such as that shown in Fig. 2.

The numerical procedure to obtain a structure map will be outlined for a single square layer occupied by A and B atoms (Fig. 1a). The procedure contains the following steps:
(i) The unit cell of the square layer is increased by adding more squares and the corners of the squares occupied by A and B atoms (Fig. 1b).
(ii) The positions at the corners are occupied with A atoms to a maximum of 50% at $y / x \geq 1$. The structures at higher A content are identical by exchange of the A and B atoms.
(iii) The different crystal structures are characterized by the coordination of the A atoms with other A atoms in the first, second and third coordination shells T_{1}, T_{2} and T_{3}, and the ratio y / x of B to A atoms, e.g. the notation $204 ; 1$ is used for the structure with $T_{1}=2 A$ atoms at distance a, no A atoms in the second coordination shell at distance $2^{1 / 2} a, T_{3}=4 A$ atoms at distance $2 a$ and $y / x=1 . T_{1}^{\max }=T_{2}^{\max }=T_{3}^{\max }=4$ are the maximum self-coordination numbers of the square layer. The coordination numbers of each shell are averaged for structures which have differently coordinated A atoms, e.g. the 042,202 and 124 (twice) coordination numbers of the four A atoms are averaged in the $123 ; 1$ structure.
(iv) The crystal structures characterized by the coordination numbers T_{1}, T_{2} and T_{3}, and a fixed composition y / x can be plotted as single points in a three-dimensional T_{1}, T_{2}, T_{3} graph (§3) or as a projection in the T_{1}, T_{2} plane as shown in Figs. $1 b$ and 2. All structures with $y / x=1$ are found to fall within a triangle, with the three structures 44 ; (1), $204 ; 1$ and $044 ; 1$ at the corners. The structure 444 ; (1) with the composition given by (1) in brackets can only be obtained in the limit of very large unit cells, because the boundary line between the A and B clusters prevents an exact realisation $444 ; 1$ for finite cells. The 444 ; (1) values are also valid for an occupation of all sites by A atoms.
(v) The structures with $y / x=1$ shown on the structure map can be considered as combinations of the variously shaded squares containing different numbers of A atoms and different configurations (cis and trans) for the occupation of two positions (Fig. 1b). The $044 ; 1$ and $204 ; 1$ structures at the righthand and upper corners of the triangle (Figs. 1 and 2) consist of squares containing two A atoms in opposite trans or neighboring cis configurations, respectively. The other structures at the right-hand side with the same composition as e.g. 1 $23 ; 1$ can be obtained by a combination of the two structural units of $044 ; 1$ and $204 ; 1$ (shown with different shading). The 444 ; (1) structure at the left-hand corner of the triangle can be considered as complete segregation of A and B atoms with

Table 1
Maximum self-coordination numbers (s-CN values) $T_{i}^{\text {max }}$ and radii R_{i} of shells in units of $a_{0} / 2\left(\mathrm{CaF}_{2}\right.$, perovskite series, face-centered cubic, bodycentered cubic lattice) or a_{0} (square net) for the first to the tenth coordination of A atoms with A atoms $\left(A_{x} B_{y}\right), \mathrm{F}$ with F atoms $\left(\mathrm{CaF}_{2}\right)$ or O atoms with O atoms (perovskite series), respectively.

i	p.c. $/ \mathrm{CaF}_{2}$		Perovskite		f.c.c.		b.c.c.		Square	
	T_{i}	R_{i}^{2}								
1	6	1	4	1	12	2	8	3	4	1
2	12	2	8	2	6	4	6	4	4	2
3	8	3	8	3	24	6	12	8	4	4
4	6	4	6	4	12	8	24	11	8	5
5	24	5	16	5	24	10	8	12	4	8
6	24	6	16	6	8	12	6	16	4	9
7	12	8	12	8	48	14	24	19	8	10
8	30	9	20	9	6	16	24	20	8	13
9	24	10	16	10	36	18	24	24	4	16
10	24	11	24	11	24	20	32	27	8	17

complete occupancy of the squares by A or B atoms, respectively. These structural units can be combined with squares containing two A atoms in a cis configuration to the structures at the left-hand border of the triangle. Points within the triangle are obtained by the combination of all structural units.
(vi) The s-CN values T_{i}^{A} and T_{i}^{B} of A and B atoms are different for $y / x>1$. The s-CN values of the minority component A are plotted in Fig. 2 for $A_{x} B_{y}, y / x \geq 1$. The lefthand border of the structure map is common for all values of y / x, whereas the right-hand border is different for different y / x values, as indicated by a broken line for $y / x=2$ in Fig. 2. An alternative way of representing the structure diagram is to use the Cowley-Warren short-range order parameter α_{i} (Hauck, 1980), as defined in (1) and (2) below. This can have values $-1 \leq \alpha_{i} \leq 1$ and can be obtained from the self-coordination numbers (s-CN) T_{i}^{A} and T_{i}^{B} of A and B atoms or from the T_{i}^{A} and y / x values (Hauck \& Mika, 1994) by means of (1)-(6).

$$
\begin{gather*}
\alpha_{i}=1-p_{i}^{B} / y^{\prime} \tag{1}\\
y^{\prime}=y /(x+y) \tag{2}\\
T_{i}^{B}=T_{i}^{\max }-\left(T_{i}^{\max }-T_{i}^{A}\right) x / y \tag{3}\\
\alpha_{i} T_{i}^{\max }=T_{i}^{A}+T_{i}^{B}-T_{i}^{\max } \tag{4}\\
\alpha_{i} T_{i}^{\max }=T_{i}^{A}-\left(T_{i}^{\max }-T_{i}^{A}\right) x / y \tag{5}\\
T_{i}^{\max }=T_{i}^{A}+T_{i}^{A B} \tag{6}
\end{gather*}
$$

p_{i}^{B} is the probability of finding a B atom in the i th coordination shell of an A atom. y^{\prime} is the fraction of B atoms in $A_{x} B_{y}$ as given by (2). The coordination numbers $\mathrm{CN}=T_{i}^{A B}$ of A atoms coordinated by B atoms are related to T_{i}^{A} by (6). Structures with compositions $y / x>1$ can be obtained by using other structural units. The $004 ; 3$ structure at the top-right corner of
the structure map for $y / x=3$ (Fig. 2) contains only squares with single occupancy. The 202 ; 3 structure contains squares with cis occupation or without A atoms similar to that for $y / x=$ 1. The structures on the right-hand border as e.g. $022 ; 2$ can also be obtained by structural units similar to those for $y / x=1$, however, with different concentrations of units containing zero, single or double (trans) occupation.

The $202 ; 2,103 ; 2$ and $022 ; 2$ structures at the corners of the $y / x=2$ field each consist of a combination of two structural units only. Structures at the borders as e.g. $322 ; 2$ or inside the $y / x=2$ field contain three or more structural units, respectively.
(vii) The α_{i} values are zero for a random distribution of A and B atoms, because the mean value of $T_{i}^{A}+T_{i}^{B}$ equals $T_{i}^{\max }$, which corresponds $e . g$. to $T_{1}=T_{2}=T_{3}=2$ at composition $y / x=$

1 (Fig. 2). Very small α_{i} values are expected for $A_{x} B_{y}$ with very weak interactions between A and A or B and B atoms and in particular at high temperatures. Positive α_{1} values are obtained for attractive interactions of A atoms, $i . e$. for cluster formation or segregation. The $202 ; 2$ and $322 ; 2$ structures of Fig. 1(b) consist of single and double rows of A atoms, respectively. Proceeding down the left-hand border of the structure map (Fig. 2) corresponds to increasing size of the A and B clusters until complete segregation of A and B atoms occurring in the 444 ; (1) structure. Negative α_{1} values indicate repulsive interactions such as Coulomb repulsion between A atoms.
(viii) Two-dimensional square structures are observed e.g. for gas molecules adsorbed on the (100) surfaces of b.c.c. metals (MacLaren et al., 1987). The extent of occupation of the surface of the metal atoms with gas molecules depends on the size of the gas molecules, the equilibrium gas pressure and the interaction between the molecules. The unit cell is usually described by the length of the two sides $l_{1} \times l_{2}$ relative to the underlying b.c.c. cell (Hauck \& Mika, 1994, 2000b; MacLaren et al., 1987). There are different structures with identical unit cells for the occupation of two or more positions, as can be seen by the two 2×3 structures $103 ; 2$ and 02 2; 2 (Fig. 1b).
(ix) Other structures such as e.g. $004 ; 3$ and $044 ; 1$ at the right-hand border of the structure map have the same cell size, but different concentrations. An $004 ; 3$ structure of metal atom A can be combined with a second $004 ; 3$ structure of A^{\prime} at the center to give $A A^{\prime} B_{2}$ or $A_{2} B_{2}$ with an $044 ; 1$ structure. This type of combination of structural units is quite frequent in ordered b.c.c., f.c.c. and p.c. alloys (§§3-5).
(a)

Figure 1
(a) Self-coordination of A atoms by nearest, next-nearest and third-nearest A atoms T_{1}, T_{2} and T_{3} in square planes. (b) The structures of planar $A_{x} B_{y}$ compounds denoted as $T_{1} T_{2} T_{3} ; y / x$ contain squares with $0-4 A$ atoms (\bullet) with a different shading of these structural units.

The most important structures at the corners of the structure map have a single set of T_{i} values such as $204 ; 1,044 ; 1$ and $004 ; 3$ in Fig. 1(b). The structures at the corners and along borders of the triangular structure map (for $y / x=1$) can be analyzed for different interactions between A atoms and a combination of structural units at the borders can be used to vary these interactions. The three corners of the structure map correspond to repulsive interactions between A atoms (e.g. Coulomb repulsion) in opposite trans positions (0 4 4; 1 structure), attractive interactions (e.g. covalent bonding) for A atoms in neighboring cis positions (2 $04 ; 1$ structure), and segregation of A and B atoms in 44 ; (1). Since in this case the crystal splits into all A and all B regions, the composition cannot be obtained for finite unit cells and is indicated by placing y / x in parentheses [step (iv), Fig. 1b]. The observed structures found in more complex systems are those on the right-hand border and in particular the structures at the corners of the structure map (204; 1, $044 ; 1$ and $004 ; 3$; Hauck \& Mika, 1994). The coordination number of the A atoms by nearest neighbor B atoms $\mathrm{CN}=4-T_{1}$ increases from 2 in $204 ; 1$ to 4 in $044 ; 1$.

Pauling's rule of parsimony is obeyed for these structures: The number of essentially different kinds of constituents in a crystal tends to be small (Pauling, 1929, 1960; Burdett, 1995). Structures, in which all A and all B atoms have the same coordination sequence $\left(T_{i}\right)$, e.g. 204 ; 1 and 044 ; 1 in Fig. 1, are usually highly symmetric, whereas structures containing A atoms with different environments, such as e.g. $123 ; 1$ or 322 ; 1 in Fig. 1(b), are built from different structural units. The symmetry of these structures is usually lower because of the different symmetry of the structural units (Hauck \& Mika,

Figure 2
T_{1}, T_{2} structure map of ordered $A_{x} B_{y}$ crystal structures $T_{1} T_{2} T_{3} ; y / x$ of square layers. The structures of Fig. $1(\bullet)$ are at the boundaries of the structure map, which vary at the right-hand side for different y / x. The A atoms of the $A B$ alloys $(y / x=1)$ are segregated in 44 ; (1), attracted in 2 $04 ; 1$, repelled in $044 ; 1$, or random in $222 ; 1$.
1994). In most cases, the experimentally observed symmetry is identical with the symmetry determined for the undistorted lattice. Sometimes the symmetry is decreased because of the Jahn-Teller effect of transition metal d electrons or because of a lone pair of main group elements such as Bi^{3+}. The structures at the top and right-hand corners of the structure map also obey Pauling's electrovalence rule: The electrovalence of each B atom in $A_{x} B_{y}$ should be compensated by the charge q of the z neighboring A atoms with coordination number CN ($\sum z q / \mathrm{CN}=$ charge of B atoms; Pauling, 1929, 1960; Burdett, 1995). The 204 ; 1 and 04 ; 1 structures of Fig. 1 for oxide layers $A \mathrm{O}$ (i.e. $B=$ oxygen) with divalent A atoms contribute the total electrovalence 2 to O atoms and compensate their formal charge -2 . On the other hand, one of the three different O atoms of the $123 ; 1$ structure with electrovalencies 1.84, 2 and 2.33 does not obey Pauling's electrovalence rule within the allowed deviation of $\sim 1 / 6(1.83-2.17)$. Most electrovalencies of f.c.c., b.c.c. or p.c. structures of the righthand borders of the structure maps are within this limit (§6).

The square-planar layers of Fig. 1(b) can be packed to give the body-centered cubic (b.c.c.) or face-centered cubic (f.c.c.) lattice with the lattice constants a_{1} and a_{2}, respectively. The A atoms in the center of the b.c.c. cell (\bullet in Fig. 3) have $T_{1}=8$ nearest neighbors at the distance $a_{1} 3^{1 / 2} / 2$ and $T_{2}=6$ secondnearest neighbors at the distance a_{1}. The self-coordination numbers (s-CN) of nearest neighbors T_{1} increase from 8 in b.c.c. to 12 in the f.c.c. lattice (Table 1). Many $\mathrm{NaCl}, \mathrm{CaF}_{2}$ and CaTiO_{3} related structures can also be obtained from square layers with an ordering of Cl, F or O atoms and vacancies. The Cl atoms of NaCl form an f.c.c. lattice and the F atoms of CaF_{2} a primitive cubic (p.c.) lattice. In CaTiO_{3} the two positions of the p.c. lattice (o in Fig. 3) are occupied by metal atoms such as Ca and Ti and three positions by vacancies. In NaCl four positions are occupied by Na atoms. Fig. 3 shows the T_{i} values of Cl atoms in $\mathrm{NaCl}, \mathrm{F}$ atoms in CaF_{2} and O atoms and vacancies in the CaTiO_{3} series.

The metal atoms such as Ca and Ti of $\mathrm{CaTiO}_{3} \square_{3}$ and the interstitial O atoms and vacancies \square at pseudo-octahedral sites [(6b) positions of $\operatorname{Im} \overline{3} m$] form together a primitive cubic structure with lattice constant $a_{0} / 2$ similar to the F atoms of CaF_{2} (Fig. 3). CaTiO_{3} and most superconducting oxides are in this group (Hauck \& Mika, 1997, 1998b; Hauck et al. 1999). The maximum s-CN values of the atoms lying on a p.c. lattice ($T_{1}=6, T_{2}=12, T_{3}=8$) are decreased for O atoms in the CaTiO_{3} series $\left(T_{1}=4, T_{2}=8, T_{3}=8\right)$, because of the metal atoms (\circ) at two positions of the p.c. lattice.

Previous investigations (Hauck et al., 1988a,b, 1989; Hauck \& Mika, 1993, 1994) have shown that the structures are most likely to be found at the borders of the structure map. All A (and all B) atoms of 8 b.c.c., 17 f.c.c. and 18 p.c. structures at the corners of the structure maps have the same set of T_{i} values (single sets for A and B atoms, $M^{i}=2$), as was required by the Wiener-Sohncke principle. Four f.c.c. and four p.c. structures have identical T_{1} and T_{2} values. The remaining 20 b.c.c., 9 f.c.c. and 20 p.c. structures with the same sets of T_{i} values for A and B atoms are not at the boundaries of the structure map (§§3-5).

$$
T_{1}=4: T_{2}=4
$$

Square lattice

$T_{1}=4 ; T_{2}=12 ; T_{3}=8$
F in CaF_{2}

$$
T_{1}=4 ; T_{2}=8: T_{3}=8
$$

$\mathrm{CaTiO} \mathrm{O}_{3}$ series

Figure 3
Coordination polyhedra for the square, body-centered metal (b.c.c.), NaCl (f.c.c. lattice of Cl atoms), primitive cubic (p.c. F atoms in CaF_{2}) and the O atom lattice in CaTiO_{3} and related structures with all possible sites for O atoms [$6(b)$ position of $\operatorname{Im} \overline{3} m$; perovskite series]. The central atom is shown by a filled circle (\bullet) and the neighbors are shown by numbers with (1) for nearest, (2) for next-nearest and (3) for third-nearest neighbor positions. Some positions of the primitive cubic lattice are occupied by other atoms shown as open circles (o), e.g. Na in the NaCl and Ca, Ti in the CaTiO_{3} derivative structures. Note that in CaTiO_{3} not all the neighboring sites are occupied by O .
of different surroundings, as is required by Pauling's rule of parsimony. The structures can be assembled from structural units similar to a jigsaw puzzle. Most series of structures (structure families) can be described by a linear sequence of structural units. Therefore, the total number of structures at the borders of the structure maps is to a large extent limited. Up to four structural units labeled a and b, for example, can be combined to the six sequences $a b, a_{2} b_{2}, a b_{2}, a b_{3}, a_{2} b$ and $a_{3} b$ (Hauck et al., 1999). The combination of structural units such as squares with two A atoms in cis or trans configurations was outlined for the square-planar net (Fig. 1b).

The structure maps of b.c.c., f.c.c. and p.c. lattices will be analyzed in $\S \S 3-$ 5 for ~ 100 structural units. Only a few structural units in about 10 different series of structures with varying degrees of repulsive (ionic) and attractive (covalent) bonding are observed. The correlation between distorted b.c.c. and f.c.c. alloys or $\mathrm{NaCl}, \mathrm{ZnS}$ and perovskite-related structures will be discussed in $\S 6$. The close relation of structures obtained from square planes can also be visualized by many identical projection

Some of these structures were also obtained using different Ising methods such as Monte Carlo simulations (Ducastelle, 1991) by assuming different interaction energies $V_{i}^{A A}, V_{i}^{B B}$ and $V_{i}^{A B}$ between $A-A, B-B$ and $A-B$ bonds in the i th shell ($\left.\S 2\right)$ or by the investigation of homogeneous sphere packing (Koch \& Fischer, 1992). The $a b$ initio crystal structure predictions by the Ising method are limited by the rapid increase in the values of V_{i}, where V_{i} is the interaction constant of the i th shell, with increased cluster size (Sanchez \& de Fontaine, 1981). The structures with the same T_{i} values for all A and B atoms (§2) can be compared with homogeneous sphere packings, in which the A or B atom positions are vacant. The number of contacts between homogeneously packed spheres corresponds to the T_{1} values of A or B atoms. In some cases T_{1} will be zero and the number of contacts corresponds to the T_{2} values. A small number of different types of homogeneous sphere packing, which is important for ordered b.c.c., f.c.c. and p.c. structures, is selected in the present investigation. These structures are shown on T_{1}, T_{2} structure maps and the relationship between different structures is outlined for different structure families. Most observed structures (§§3-5) can be described by a combination of structural units such as the structures of the Ruddlesden-Popper structure family. The T_{1} and T_{2} values vary linearly at the borders of the structure map and the neighborhood of A atoms changes gradually with a minimum
patterns or identical space groups and Pearson symbols (§6). Some structures can be considered as an intergrowth of b.c.c., f.c.c. and p.c. or CaF_{2} slabs (Parthé et al., 1993; Kripyakevich \& Grin, 1979; Pani \& Fornasini, 1990). Most of the slabs in these compounds with different ordering of metal atoms are very similar to the structural units of the present investigation.

2. Ising-type analysis of structure families

We have investigated the borders of structure maps for ordered b.c.c., f.c.c. and p.c. $A_{x} B_{y}$ structures with the following numerical procedure, similar to those outlined in previous investigations (Hauck et al., 1988b, c, 1989; Mika et al., 1989; Hauck \& Mika, 1993, 1994):
(a) Determination of all reduced unit cells (Křivý \& Gruber, 1976) with a maximum of nine sites for A or B atoms (Tables $1 \mathrm{~A}-3 \mathrm{~A}$ of deposited material ${ }^{\mathbf{1}}$). The lattice constants $a_{0}=2$ allow integer values for the cell parameters and x, y, z coordinates of atoms.
(b) Occupation of sites in different concentrations and configurations.

[^0](c) Selection of $A_{x} B_{y}$ structures $T_{1} T_{2} T_{3} ; y / x$ with identical s-CN values and composition y / x.
(d) Elimination of identical structures.
(e) Projection in different directions.
(f) Determination of the space group (Mika et al., 1994).

The T_{1}, T_{2} and T_{3} values were plotted for different y / x values to create three-dimensional structure maps and the structures on the borders were analyzed for structural units (such as the squares with A in cis and trans configurations in Fig. 1). The structures with larger unit cells could be constructed as soon as the structural units were known.

Some structures of the present compilation were obtained by a different method (Ising model), as will be outlined briefly in the following: At high temperatures many binary alloys $A_{x} B_{y}$ adopt a disordered form of one of the common crystal structures of metals: cubic close-packed (c.c.p.), hexagonal close-packed (h.c.p.) or body-centered cubic (b.c.c.). At lower temperatures the different metal atoms A and B order because of decreased entropy of mixing and increased attractive or repulsive interaction constants $\pm\left|V_{i}\right|$ in the i th coordination shell, $i=1,2, \ldots$, where $V_{i}=V_{i}^{A A}+V_{i}^{B B}-2 V_{i}^{A B}$ is given by the interaction energies between $A-A, B-B$ and $A-B$ bonds in the i th shell (Kanamori \& Kakehashi, 1977); $V_{i}>0$ favors A B bonds, $V_{i}<0$ favors $A-A$ and $B-B$ bonds (Ducastelle, 1991; Allen \& Cahn, 1972). These authors have derived sets of ordered structures applying the Ising model with V_{1}, V_{2} or ratios V_{2} / V_{4} and V_{3} / V_{4} as parameters.

An analysis of these $A_{x} B_{y}$ structures has shown that the B atoms of many structures exhibit not a single coordination as the A atoms do, but two to five different self-coordination numbers T_{i}^{B} for different B atoms in the same structure. In a few cases the different T_{i}^{B} values start to deviate with a slightly different coordination only in a higher coordination shell, e.g. in the sixth coordination.

3. Body-centered cubic alloys $A_{x} B_{y}$

We have determined numerically the structures $A_{x} B_{y}$ with a single coordination ($M^{i}=2$, §2) up to the 10 th shell of all A and B atoms with an upper bound of $x+y=9$ for b.c.c. structures. Of the 27 b.c.c. structures thus obtained (Table $2 a$, Fig. 1A, deposited), 10 b.c.c. structures were previously derived by the Ising model (Finel \& Ducastelle, 1984). These 10 structures are at the corners of the $T_{1} T_{2} T_{3} ; y / x$ structure map. Only the five ordered compounds $444 ; 1 \mathrm{a}(\gamma-\mathrm{TiCu}), 40$ 12; $1(\mathrm{NaTl}), 06$ 12; $1(\mathrm{CsCl}), 206 ; 2\left(\mathrm{CeCd}_{2}\right)$ and $044 ; 2$ $\left(\mathrm{MoSi}_{2}\right)$ are observed. Approximately 40 other observed structures (Table 2b, Fig.2A, deposited) are on the borders of the T_{1}, T_{2}, T_{3} structure map (Fig. 4). The six structures with $y / x=1(0612 ; 1,246 ; 1,4012 ; 1,424 ; 1,444 ; 1,646 ; 1)$, and the 8612 ; (1) structure (corresponding to segregation of A and B atoms) are at the seven corners (C) of a polyhedron in the T_{1}, T_{2}, T_{3} coordinate system containing 15 edges $(E$; Hauck \& Mika, 1997). With Euler's formula $C+P=E+2$, topological consistency requires $P=10$ planes. The decahedron is projected as a triangle in the T_{1}, T_{2} coordinate system (Fig. 4) with $0612 ; 1$ (CsCl) (repulsion), $4012 ; 1$ (NaTl)
(attraction) and 8612 ; (1) (segregation) as corners. The other structures are inside the triangle (Fig. 4). Structures such as 23 12; (1) or 6312 ; (1) at the borders of the T_{1}, T_{2} structure map (Fig. 4) can only be obtained as suprema in the limit of very large unit cells in a similar way to 8612 ; (1). The other structures along the edges of the $T_{1} T_{2} T_{3} ; y / x$ structure map allow the analysis of architecture by structural units. Figs. $1 \mathrm{~A}(a)-(d)$ (deposited) show most structures at the corners of the structure map projected in several different directions to illustrate the different structural units for structures on different edges of the T_{1}, T_{2}, T_{3} structure map (Hauck \& Mika, 1997).

There are 10 b.c.c. homometric structures, as indicated by curly brackets in Table 2(a) - structures with an identical coordination (all T_{i}) of all atoms. The homometric crystal structures cannot be distinguished by powder patterns of Xray or neutron diffraction if the lattice is undistorted. They are labeled with a and b in Fig. 1A (deposited) and are bracketed in Tables 2-6. In other ('quasi-homometric') structures the T_{i}^{B} values of the majority component B deviate at higher coordination numbers as e.g. in $200 ; 7 \mathrm{a}, \mathrm{b}$ or $022 ; 7 \mathrm{a}, \mathrm{b}$ (Table 1A, deposited) or T_{i}^{A} and T_{i}^{B} values of both A and B components deviate for $i>3$.

Some structures in Table 2(a) exhibit identical Cowley short-range order parameters α_{i}, but have different compositions y / x. These series of homologous structures have identical unit cells which are filled up successively by A atoms until $T_{i}^{\text {max }}$ is reached (Table 3). Each A and each B atom of these structures must have the same set of numbers T_{1}, T_{2} and T_{3}, respectively. The structure with maximum $r^{*}=(y / x)_{\max }$ value, $T_{1}^{*} T_{2}^{*} T_{3}^{*} ; r^{*}$, is filled up with A atoms in steps of $k=r^{*}, \ldots 1,0$ to complete occupation with A atoms at $y / x=0$ (Hauck \& Mika, 1994)

$$
\begin{aligned}
T_{i}(k) & =T_{i}^{\max }-\left(T_{i}^{\max }-T_{i}^{*}\right) k / r^{*} \\
y / x & =k /\left(r^{*}+1-k\right)
\end{aligned}
$$

These homologous series of structures also contain structures with $2 k \leq r^{*}$ in Table 3 having A and B atoms interchanged,

Figure 4
T_{1}, T_{2} structure map of ordered b.c.c. $A_{x} B_{y}$ compounds $T_{1} T_{2} T_{3} ; y / x$ for the [001] (■) and [111] ($\mathbf{\Delta})$ layered compounds (Table 2b).
similar to AuCu_{3} and CuAu_{3} in the f.c.c. lattice (Hauck \& Mika, 1994).

All structures of homologous series are usually at corners or edges of the structure map. In a few cases only the structures with maximum $r^{*}=(y / x)_{\text {max }}$ values are on the border (homologous II series, see §5). Other series of structures with identical unit cells are on the same border of the structure map with different α_{i} values (quasi-homologous structures).

The existence of homometric and homologous series of structures (with identical α_{i} values), as introduced above, shows that a single set of interaction parameters V_{i} can give rise to different structures. A final remark concerns homometric structures: these were not found in investigations of the Ising model (Ducastelle, 1991; Allen \& Cahn, 1972; Finel \& Ducastelle, 1984; Kanamori \& Kakehashi, 1977).

Most of the observed crystal structures of ordered b.c.c. alloys (Parthé et al., 1993) can be related to three different series of structures (Table $2 b$): The combination of 444 ; 1a and $0612 ; 1$ to give 2.7 4.7 6.7; 1 [Fig. $1 \mathrm{~A}(a)$, deposited], the combination of $206 ; 2$ and 03 9; 2 to give $0.728 ; 2$ [Fig. $1 \mathrm{~A}(d)$, deposited] and structures which can be considered as CsCl defect structures. Closely related structures with different composition were included within these series (Table $2 b$). For example, the $\mathrm{Ti}_{2} \mathrm{Cu}_{3}$ and $\mathrm{Ti}_{3} \mathrm{Cu}_{4}$ structures can be obtained by a combination of the $\mathrm{MoSi}_{2}(044 ; 2)$ and γ - $\mathrm{TiCu}(44$; 1) structures [Fig. $2 \mathrm{~A}(a)$, deposited]. $\mathrm{Au}_{2} \mathrm{Nb}_{3}$ can be considered as a combination of $444 ; 2$ and γ $\mathrm{TiCu}(444 ; 1) . \mathrm{Ti}_{3} \mathrm{Pd}_{5}$ and $\mathrm{Os}_{2} \mathrm{Al}_{3}$ are combinations of $\mathrm{MoSi}_{2}(044 ; 2)$ and $\mathrm{CsCl}(0612 ; 1)$.

The $039 ; 2$ structure is realised for SiFe_{2} (HT) and Ti or Al atoms in the $(\mathrm{Nb}, \mathrm{Al})\left(\mathrm{Nb}, \mathrm{Ti}^{2}\right) \mathrm{Ti}_{2} \mathrm{Al}_{2}$ structure [Fig. $2 \mathrm{~A}(b)$, deposited]. The $206 ; 2$ structure occurs for CeCd_{2} or for PbLi_{2}, which is part of

Table 2
(a) Coordination T_{1}, T_{2} and T_{3} of A atoms and composition y / x in b.c.c..
$A=\mathrm{W}, \mathrm{Pa}, \mathrm{Np}\left(M^{i}=1\right)$ and b.c.c. $A_{x} B_{y}$ with single $T_{i}(A)$ and $T_{i}(B)$ values $\left(M^{i}=2, \S 2\right)$ (Fig. 1A, deposited) [homometric structures a, b are indicated by curly brackets, $T_{i} ; y / x$ values in brackets are not at the border of the structure map (Fig. 4)], coordination of A atoms and composition in square [or hexagonal (*)] planes, space group (SG) and Pearson symbol (PS), No. of reduced unit cell in Table 1A (deposited) and positions of atoms $A_{2}-A_{4}$ in addition to A_{1} in the origin.

$T_{i}(A) ; y / x$ b.c.c.	$T_{i}(A) ; y / x$ square	SG	PS	No.	A_{2}	A_{3}	A_{4}
86 12; (1)	44 4; (1)	229	cI21	1			
(6 4 6; 1) \dagger	$220 ; 1$	67	$o C 8$	7	$1 \overline{1} 1$		
($535 ; 1$) \dagger	$124 ; 1$	2	$a P 8$	40	$\overline{1} 13$	204	002
(4 4 4; 1a) \dagger	44 4; (1)	129	$t P 4$	10	111		
$(444 ; 1 b) \dagger$ ¢	$204 ; 1$	131	$t P 8$	45	002	131	111
(4 $34 ; 1) \dagger$	$122 ; 1$	11	$m P 8$	46	$1 \overline{1} 3$	111	002
(4 $26 ; 1 \mathrm{a}$)	$220 ; 1$	11	$m P 4$	8	$0 \overline{2} 2$		
(4 $26 ; 1 \mathrm{~b}$))	220 ; 1	66	$o C 16$	52	202	111	111
(4 $25 ; 1$)	$124 ; 1$	2	$a P 8$	39	$\overline{2} 02$	行 $\overline{3}$	$0 \overline{2} 2$
(42 4; 1a) \dagger	$204 ; 1$	65	$o C 4$	2			
(4 $24 ; 1 \mathrm{~b}) \dagger$ †	$204 ; 1$	141	$t I 16$	55	111	$1 \overline{1} \overline{1}$	200
(4 $18 ; 1$) \dagger	04 4; 1	74	ol16	49	$\overline{1} 13$	$\overline{1} 11$	002
40 12; 1	04 4; 1	227	cF16	13	111		
(3 $35 ; 1) \dagger$	$124 ; 1$	2	$a P 8$	53	$0 \overline{2} 0$	$1 \overline{3} \overline{1}$	$1 \overline{1} \overline{1}$
(2 $46 ; 1) \dagger$	$220 ; 1$	74	ol8	12	$00 \overline{2}$		
06 12; 1	44 4; (1)	221	$c P 2$	3			
(4 2 4; 1.3a)	$222 ; 1.3 \ddagger$	2	$a P 7$	31	$1 \overline{1} 1$	$2 \overline{2} 0$	
(4 $24 ; 1.3 \mathrm{~b}$))	22 2; 1.3\#	146	hR7	31	002	$2 \overline{2} 0$	
(2 $33 ; 1.5$)	$111 ; 1.5$	12	$m C 10$	17	$1 \overline{1} \overline{1}$		
(4 2 2; 2a) \dagger,	$\begin{aligned} & 202 ; 2 \\ & 060 ; 2 \ddagger \end{aligned}$	69	$o F 12$	4			
(4 $222 ; 2 \mathrm{~b}$) \dagger,	060 ; 2 \ddagger	151	$h P 9$	58	002	$1 \overline{1} 1$	
(2 $22 ; 2$) \dagger	060 ; 2 \ddagger	2	$a P 9$	66	$0 \overline{2} 2$	$1 \overline{3} 1$	
20 6; 2	66 6; (1) \ddagger	164	$h P 3$	5			
0 44;2	44 4; (1)	139	$t 16$	6			
(3 $12 ; 2.5$)	$111 ; 2.5 \ddagger$	2	$a P 7$	31	$2 \overline{2} 0$		
$200 ; 3$	006 ; 3 \ddagger	166	$h R 4$	9			
$020 ; 4$	000 ; 4	87	$t I 10$	17			
$200 ; 6$	$000 ; 6 \ddagger$	148	$h R 7$	31			

\dagger On the borders of the $T_{1} T_{2} T_{3} ; y / x$ polyhedron. \ddagger Hexagonal planar.
(b) Structures and $T_{i}(A)$ values of $A_{x} B_{y} C_{z}$ alloys (Fig. 2A, deposited) with sequences of layers $A B(=a), A B B$ $(=b)$ etc. A second space group is given for structures with higher SG than originally reported.

$A_{x} B_{y} C_{z}$	SG	PS	$T_{i}(A)$	$T_{i}(B)$	$T_{i}(C / D)$
W	229	$c I 2$	$8612 ;(1)$		
LT Pa	139	$t I 2$	$8612 ;(1)$		
$\beta-\mathrm{Np}$	$129 / 90$	$t P 4$	$8612 ;(1)$		
$\alpha-\mathrm{Np}$	62	$o P 8$	$8612 ;(1)$		

Layered (001) structures (Schubert et al., 1960) [Fig. 2A(a) deposited]						
CsCl	$a(A B)$	221	$c P 2$	$0612 ; 1$		
MoSi_{2}	$b\left(A B_{2}\right)$	139	$t 16$	0 44; 2		
ReSi_{2}	b	71	oI6	04 4; 2		
VAu_{2}	b	63/38	oC12	0 44;2		
AlAu_{2}	b	62	oP12	0 44;2		
$A B_{3}$	$c\left(A B_{3}\right)$	123	$t P 4$	0 44; 3		
$\gamma-\mathrm{TiCu}$	$d\left(A_{2} B_{2}\right)$	129	$t P 4$	4 44; 1		
$\mathrm{Au}_{2} \mathrm{Nb}_{3}$	$e\left(A_{2} B_{3}\right)$	139	$t I 10$	44 4; 1.5		
$A B_{2}$	$f\left(A_{2} B_{4}\right)$	129	$t P 6$	4 44; 2		
$A B$	$g\left(A_{4} B_{4}\right)$	129	$t P 8$	$658 ; 1$		
$\mathrm{Ti}_{3} \mathrm{Cu}_{4}$	$b d$	139	$t I 14$	2.74 4; 1.3		
$\mathrm{Ti}_{2} \mathrm{Cu}_{3}$	$b d b$	129	$t P 10$	24 4; 1.5		
$\mathrm{Os}_{2} \mathrm{Al}_{3}$	$a b$	139	$t I 10$	058 ; 1.5		
$\mathrm{Ti}_{3} \mathrm{Pd}_{5}$	$b a b$	123	$t P 8$	04.7 6.7; 1.7		
$\mathrm{ReAl}(\mathrm{Re}, \mathrm{Al})_{2}$	$A C B C$	123	$t P 4$	04 4; 3	$044 ; 3$	$0612 ; 1$

Layered (111) structures (Zalkin \& Ramsey, 1956) [Fig. 2A(b) deposited]				
CsCl	$h(A B)$	221	$c P 2$	$0612 ; 1$
$\mathrm{CeCd}_{2}\left(\mathrm{PbLi}_{2}\right)$	$k\left(A B_{2}\right)$	164	$h P 3$	$206 ; 2$
$\mathrm{BiF}_{3}, \mathrm{AlFe}_{3}$	$l\left(A B_{3}\right)$	225	$c F 16$	$0012 ; 3$
$A B_{4}$	$m\left(A B_{4}\right)$	166	$h R 15$	$006 ; 4$

Table 2 (continued)

$A_{x} B_{y} C_{z}$		SG	PS	$T_{i}(A)$	$T_{i}(B)$	$T_{i}(C / D)$
$A B_{5}$	$n\left(A B_{5}\right)$	164	$h P 6$	$006 ; 5$		
NaTl	$o\left(A_{2} B_{2}\right)$	227	cF16	40 12; 1		
$\mathrm{Al}_{2} \mathrm{Li}_{3}$	$p\left(A_{2} B_{3}\right)$	166	hR15	309 9, 1.5		
(AlLi)	$q\left(A_{3} B_{3}\right)$	164	$h P 6$	428 ; 1		
$\mathrm{Pb}_{2} \mathrm{Li}_{7}$	lm	164/150	$h P 9$	00 9; 3.5		
$\left(\mathrm{Pb}_{4} \mathrm{Li}_{11}\right)$	klll	164	$h P 15$	0.50 10.5; 2.75		
$\mathrm{Pb}_{3} \mathrm{Li}_{8}$	$l k l$	166	hR33	0.70 10; 2.7		
$\left(\mathrm{Si}_{5} \mathrm{Li}_{13}\right.$)	lklkl	164	$h P 18$	0.80 9.6; 2.6		
$\mathrm{Si}_{2} \mathrm{Li}_{5}$	kl	166	$h R 21$	$109 ; 2.5$		
$\mathrm{Zn}(\mathrm{Ag}, \mathrm{Zn})_{2}$	k	147	$h P 9$	20 6; 2		
$A B$	ho	156	$h P 18$	2.92 10.7; 1		
$\mathrm{SiFe}_{2} \mathrm{HT}$	hl	164	$h P 6$	039 9; 2		
PtAl_{2}	$h l$	164	$h P 12$	039 9, 2		
$\mathrm{Ga}_{4} \mathrm{Li}_{5}$	op	164	$h P 9$	$3.5010 .5 ; 1.25$		
(AlLi_{2})	$l p$	164	$h P 9$	20 10; 2		
$\mathrm{Ge}_{2} \mathrm{Cu}_{2} \mathrm{Li}_{5}$	$A B C_{2} B^{\prime} C_{3}$	164	$h P 9$	009 9; 3.5	10 6; 3.5	
$(\mathrm{Nb}, \mathrm{Al})(\mathrm{Nb}, \mathrm{Ti}) \mathrm{Ti}_{2} \mathrm{Al}_{2}$,	$A C D B D C$	164	$h P 6$	00 6; 5	$006 ; 5$	039 9
$\mathrm{Ni}_{2} \square \mathrm{Al}_{3}$	$A C A C B C$	164	$h P 5$	039 92	$006 ; 5$	
SnMgLiPd	$A B C D$	216	cF16	00 12; 3	00 12; 3	00 12; 3
AgSbLi_{2}	$A B C C$	216	cF16	00 12; 3	00 12; 3	40 12; 3
AlMnCu_{2}	$A C B C$	225	cF16	00 12; 3	00 12; 3	06 12; 1
$\mathrm{VSnR} h_{2}$	$A C B C$	139	$t I 8$	00 12; 3	00 12; 3	06 12; 1
USnPd ${ }_{2}$	$A C B C$	69/62	oF16	00 12; 3	00 12; 3	$0612 ; 1$
CsCl related structures with composition of $\mathrm{Cs} / \mathrm{Cl}$ layers [Figs. $2 \mathrm{~A}(a)$ and (b) deposited]						
$\mathrm{Au}(\mathrm{Zn}, \mathrm{Au})_{3}$	$A_{2} B_{2} / B_{4}$	63/26	$o C 16$	04 6; 3		
$(\mathrm{Mo}, \mathrm{U}) \mathrm{U}_{3}$	$A B / B_{2}$	123	$t P 4$	$024 ; 3$		
$\mathrm{Zn}_{3} \mathrm{Ga}_{4} \mathrm{Pd}_{7}$	$A_{3} B_{4} / C_{7}$	146	$h R 42$	02 4; 3.7	036 6; 2.5	0612 ; 1
$\mathrm{Pu}_{3} \mathrm{Pd}_{4}$	$A_{6} B / B_{7}$	148	$h R 42$	05 10; 1.3		
CsCl	A / B	221	$c P 2$	06 12; 1		
UCo	A / B	199	cI16	06 12; 1		
RT AuCd	A / B	157	hP18	06 12; 1		
La(Ag,In)	A / B	139	$t I 16$	$0612 ; 1$		
$\delta-\mathrm{TiCu}$	A / B	123	$t P 2$	06 12; 1		
RT PuGa	A / B	107	$t I 16$	06 12; 1		
α-VIr	A / B	65	$o \mathrm{C} 8$	06 12; 1		
NaHg	A / B	63	$o C 16$	06 12; 1		
$\mathrm{Au}(\mathrm{Cu}, \mathrm{Zn})$	A / B	55	$o P 8$	06 12; 1		
$\mathrm{Au}(\mathrm{Zn}, \mathrm{Au})$	A / B	26	$o P 16$	06 12; 1		
KHg	A / B	2	$a P 8$	0612 ; 1		
Other structures [Fig. 2A(a) deposited]						
$\mathrm{Pb}_{5} \mathrm{Li}_{22}$		216/196	cF432	00 4.8; 4.4		
$\mathrm{In}_{3} \mathrm{Li}_{13}$		227	cF128	$004 ; 4.3$		
$\mathrm{Sb}_{2} \mathrm{Tl}_{7}$		229	cI54	014 ; 3.5		
AuMn_{3}		123	$t P 12$	02.67 4; 3		
$\mathrm{Sn}_{3} \mathrm{Li}_{7}$		11	$m P 20$	03.3 4; 2.3		
GaLi_{2}		63	$o \mathrm{C} 12$	20 8; 2		
$\mathrm{V}_{4} \mathrm{Zn}_{5}$		139	$t I 18$	$434 ; 1.2$		

(Schubert et al., 1960), $\mathrm{Ti}_{2} \mathrm{Cu}_{3}$ and $\mathrm{Ti}_{3} \mathrm{Cu}_{4}$ (Schubert et al., 1964), $\mathrm{Pb}_{2} \mathrm{Li}_{7}$ (Zalkin \& Ramsey, 1956) and $\mathrm{Pb}_{3} \mathrm{Li}_{8}$ (Zalkin et al., 1956).

The $\mathrm{Zn}_{3} \mathrm{Ga}_{4} \mathrm{Pd}_{7}$ and $\mathrm{Pu}_{3} \mathrm{Pd}_{4}$ structures of Fig. $2 \mathrm{~A}(b)$ (deposited) are closely related to the $\mathrm{CsCl}(A B)$ structure, but with larger unit cells because of the different stoichiometry. Some of the $A=\mathrm{Zn}, \mathrm{Ga}, \mathrm{Pu}, \mathrm{Cs}$ sites are occupied by $B=\mathrm{Pd}, \mathrm{Cl}$. A similar situation occurs for AlFe_{3}, AlMnCu_{2} (Heusler alloy), AgSbLi_{2} and SnMgLiPd [Fig. $2 \mathrm{~A}(a)$, deposited]. The $\mathrm{Sn}, \mathrm{Mg}, \mathrm{Li}$ and Pd atoms of SnMgLiPd can be combined in five different ways to yield $\quad \mathrm{CsCl} \quad[(\mathrm{Sn}, \mathrm{Mg})(\mathrm{Li}, \mathrm{Pd})]$, $\mathrm{AlMnCu}_{2}\left[\mathrm{SnMg}(\mathrm{Li}, \mathrm{Pd})_{2}\right], \mathrm{AlFe}_{3}$ $\left[\mathrm{Sn}(\mathrm{Mg}, \mathrm{Li}, \mathrm{Pd})_{3}\right], \mathrm{AgSbLi}_{2}[\mathrm{LiSn}-$ $\left.(\mathrm{Mg}, \mathrm{Pd})_{2}\right]$ or $\mathrm{NaTl}[(\mathrm{Sn}, \mathrm{Li})(\mathrm{Mg}, \mathrm{Pd})]$. The combination is similar to the sphalerite-related structures (Hauck \& Mika, 1998a) or the combination of two $004 ; 3$ square layers to give 044 ; 1 (Fig. 1) as was outlined in step (ix), §1.

The sequence $\mathrm{Ni} \mathrm{AlNiAl} \square \mathrm{Al}$ of vacancies $\square=B$ in the $\mathrm{Ni}_{2} \square \mathrm{Al}_{3}$ structure $(A C A C B C)$ (Table $2 b$) can alternate in a sequence of Fibonacci numbers, if the composition is varied to $\mathrm{Ni}_{1.85} \square_{1.15} \mathrm{Al}_{3}$ (Chattopadhyay et al., 1987).

The structures of Po (§5) and diamond have the same $T_{i}(A)$ values as $\mathrm{CsCl}(\square \mathrm{Po})$ and NaTl ($\square \mathrm{C}$), respectively, with vacant Cs or Na positions. The number of vacancies \square is increased to $432-58=374$ in an idealized $\alpha-\mathrm{Mn}$ (0 0 1.24; 6.45) with the
the $\mathrm{Pb}_{3} \mathrm{Li}_{8}$ structure. The $\mathrm{Pb}_{3} \mathrm{Li}_{8}, \mathrm{Al}_{2} \mathrm{Li}_{3}$ and $\mathrm{Si}_{2} \mathrm{Li}_{5}$ structures can be divided in structural units similar to the $206 ; 2-039 ; 2$ series [Fig. $2 \mathrm{~A}(b)$, deposited]. CsCl is also a structural unit for combinations in the [111] direction (layers of Cs and Cl atoms, which alternate in the [111] direction).

The two families of structures with sequences of A or B atom layers in the [001] or [111] direction can be described by sequences of structural units $a(\widehat{=}$ layer sequence $A B), b(\widehat{=}$ layer sequence $A B B$) etc. (Table $2 b$), similar e.g. to the Ruddlesden-Popper and Aurivillius phases with sequences of v or $v^{\prime}\left(\mathrm{CaTiO}_{3}\right)$ and $w^{\prime}(\mathrm{SrO})$ or $W^{\prime}\left(\mathrm{WBi}_{2} \mathrm{O}_{6}\right)$ structural units, respectively (Hauck \& Mika, 1997). The present families of structures are also named by the pioneers who investigated the crystal structures of the first example of the series: $\mathrm{Au}_{2} \mathrm{Nb}_{3}$
x, y, z parameters of the 58 Mn atoms $1 / 3(w=0.317$, $u=0.356), 1 / 4\left(v^{\prime}=0.278\right), 1 / 12\left(u^{\prime}=0.089\right)$ and $0(v=0.042)$ rather than the observed values in brackets (Wyckoff, 1982).

The metal atoms of the idealized superconducting oxides (Hauck \& Mika, 1997, 1998b) lie on a b.c.c. lattice with structures similar to the Schubert family. The metal lattices of $\mathrm{CuLa}_{2} \mathrm{O}_{4}$ and $\mathrm{LaCu}_{2} \mathrm{La}_{2} \mathrm{O}_{7}$ correspond to MoSi_{2} and $\mathrm{Os}_{2} \mathrm{Al}_{3}$ ($\mathrm{AlOs}_{2} \mathrm{Al}_{2}$; Table 2b). The formulae $\mathrm{Cu}^{\prime} \mathrm{La}_{2} \mathrm{O}_{4}, \mathrm{La}^{\prime} \mathrm{Cu}_{2} \mathrm{La}_{2} \mathrm{O}_{7}$ and $\mathrm{Cu}^{\prime} \mathrm{Ba}_{2} \mathrm{Cu}_{2} \mathrm{Y}^{\prime} \mathrm{O}_{7}$ (instead of $\mathrm{La}_{2} \mathrm{CuO}_{4}, \mathrm{La}_{3} \mathrm{Cu}_{2} \mathrm{O}_{7}$ and $\mathrm{YBa}_{2} \mathrm{Cu}_{3} \mathrm{O}_{7}$) show the sequence of metal atoms $\mathrm{Cu}^{\prime} \mathrm{LaLa}$, $\mathrm{La}^{\prime} \mathrm{CuLaLaCu}$ and $\mathrm{Cu}^{\prime} \mathrm{BaCuY}{ }^{\prime} \mathrm{CuBa}$ with a single $\mathrm{Cu}^{\prime}, \mathrm{La}^{\prime}$ and Y^{\prime} at mirror planes and two other atoms left and right of the mirror plane.

4. Face-centered cubic alloys $\boldsymbol{A}_{x} \boldsymbol{B}_{\boldsymbol{y}}$

The face-centered cubic structure is obtained if spheres with diameter d are ordered with the cubic close-packed structure. The distance between two identical square layers of the facecentered Cu structure $a_{0}=2^{1 / 2} d$ can be increased up to $1.66 d$ in In, Ga, La or Ce , or decreased to $1.33 d$ in Pu or $1.0 d$ in W (Wyckoff, 1982; Ho \& Douglas, 1968; Pearson, 1972; Villars \& Calvert, 1986; Hyde \& Andersson, 1989; Parthé et al., 1993). The undistorted structures are compared in the present paper using the self-coordination numbers T_{i} of b.c.c. and f.c.c. alloys and their different locations on structure maps.

The 28 structures of ordered f.c.c. $A_{x} B_{y}$ with single $T_{1} T_{2} T_{3}$; y / x values $\left(M^{i}=2, \S 2\right)$ are listed in Table 4(a). 15 of these structures are at the corners of the structure map (Fig. 5). Only seven structures were obtained by the Ising model (Kanamori \& Kakehashi, 1977). The 126 24; (1), 60 12; 1a,b, 44 16; 1 and $468 ; 1$ structures are the limiting structures at $y / x=1$ (Fig. 5). 60 12; 1a,b, 53 12; 1a,b and 42 12; 1.3a,b are homometric structures - structures with identical T_{i} values, but different symmetry as was outlined in $\S 3$. Other structures such as 22 12; 2a,b,c are 'quasi-homometric' with some deviations of higher T_{i} values. The lattice energies of the undistorted lattices as given by the Madelung factors are slightly different (Hauck et al., 1988b,d).

The $060 ; 3 \mathrm{AuCu}_{3}, 468$; $1 \mathrm{CuAu}, 2212 ; 2 \mathrm{a} \mathrm{MoPt}_{2}$ and 028 ; $4 \mathrm{MoNi}_{4}$ structures are within homologous series of structures with identical α_{i} values (Table 5), as was outlined for b.c.c. alloys in $\S 3$.

Three different series of experimental structures are shown in Figs. 3A $(a)-(c)$ (deposited). The compilation (Table $4 b$) also includes some theoretical structures and some NaCl (Hauck et al., 1988c) or ZnS (Hauck \& Mika, 1998a) derivative structures, which are shown in Figs. $3 \mathrm{~A}(a)-(d)$ (deposited), if the corresponding structures of alloys are not known. The Na and Cl atoms of the NaCl structure form two f.c.c. lattices with a translation $a_{0} / 2, a_{0} / 2, a_{0} / 2$ of the lattice constant a_{0}. The f.c.c. lattices of ZnS (sphalerite) are translated by $a_{0} / 4, a_{0} / 4, a_{0} / 4$. The ordering of metal atoms at Na or Zn positions or nonmetal atoms at Cl or S positions can be characterized by the sCN values T_{i} similar to alloys. In $\alpha-\mathrm{NaFeO}_{2}$, e.g. the Na and Fe atoms occupy the same positions as the Cu and Pt atoms in CuPt ,a (Table $4 b$). The corresponding ZnS derivative structure is $\operatorname{In}(\mathrm{Ga}, \mathrm{Al}) \mathrm{P}_{2}$ with a disordered distribution of Ga and Al atoms at the Pt positions of the CuPt structure. In $\mathrm{Cd} \square \mathrm{Cl}_{2}$ and $\mathrm{Gd}_{2} \square \mathrm{C}$ the Cd atoms and vacancies \square or the C atoms and vacancies form the CuPt structure. In $\square \mathrm{Nb}_{3} \square \mathrm{O}_{3}$ the metal $\square \mathrm{Nb}_{3}$ and non-metal sublattices $\square \mathrm{O}_{3}$ are both ordered as in the AuCu_{3} structure. The space group number and Pearson symbol listed in Table $4(b)$ correspond to the compounds $A_{x} B_{y} C_{z}$.

The T_{1} and T_{2} values in the $T_{1} T_{2} T_{3} ; y / x$ notation of $\mathrm{NaCl}-$ related compounds describe the connection of octahedra by edges and corners, respectively. For example, the $107 ; 4 \mathrm{UCl}_{5}$ structure contains UCl_{6} octahedra connected by one edge to form $\left(\mathrm{UCl}_{5}\right)_{2}$, while the UF_{6} octahedra of $028 ; 4 \mathrm{UF}_{5}$ are connected by two corners in a one-dimensional row. The CTi_{6}

Table 3
$\mathrm{s}-\mathrm{CN}$ values of some homologous series of b.c.c. derivative structures (Fig. 1A, deposited) with different r and k values (see text).

r^{*}	k	$T_{i}(A)$
6	6	$200 ; 6$
6	5	$312 ; 2.5$
6	4	$424 ; 1.33 \mathrm{a}, \mathrm{b}$
6	3	$536 ; 0.75 \mathrm{a}, \mathrm{b}$
6	2	$648 ; 0.4$
6	1	$7510 ; 0.17$
6	0	$8612 ;(0)$
4	4	$020 ; 4$
4	3	$233 ; 1.5$
4	2	$446 ; 0.67$
4	1	$659 ; 0.25$
4	0	$8612 ;(0)$
		$200 ; 3$
3	3	$424 ; 1 \mathrm{a}, \mathrm{b}$
3	2	$648 ; 0.33$
3	1	$8612 ;(0)$
3	0	

octahedra of $6012 ; 1 \mathrm{bTi} \mathrm{T}_{2} \mathrm{C}$ are linked by six edges, the NTi_{6} octahedra of $4416 ; 1 \mathrm{Ti}_{2} \mathrm{~N}$ are linked by four edges and four corners. The vacancies \square of $008 ; 5 \mathrm{~V}_{6} \mathrm{C}_{5} \square$ or the Re atoms of 0 $08 ; 5 \mathrm{Li}_{5} \mathrm{ReO}_{6}$ form isolated octahedra. Usually the metal atoms with high valency such as U^{5+} or Re^{7+} are as far apart as possible with low T_{1} and T_{2} values because of repulsive interactions.

The number T_{1} of nearest neighbors of ZnS derivative structures corresponds to the number of ZnS_{4} tetrahedra shared by corners. In e.g. $(\mathrm{Ni}, \mathrm{Cu})_{5} \mathrm{Si}_{2} \mathrm{~S}_{7}$ with an ordering of Si atoms as in the $\mathrm{Mn}_{2} \mathrm{Au}_{5}$ alloy (1 $310 ; 2.5$), each SiS_{4} tetrahedron is linked to another SiS_{4} tetrahedron in $\mathrm{Si}_{2} \mathrm{~S}_{7}$ groups.

Pauling's electrovalence rule is satisfied for all NaCl derivative structures with composition $r=y / x=1,2$ and 5 along the upper right-hand border of the structure map with $T_{2}=$ $-2 T_{1}+6(3-r)$ for $1 \leq r \leq 2$ and $T_{2}=-2 T_{1}+2(5-r)$ for $2 \leq r \leq 5$, and for all ZnS derivative structures with composition $r=y / x=1$ and 3 along the right-hand border ($T_{1}=6-2 r$; Hauck \& Mika, 1994, 1998a). The Ti atoms of $\mathrm{Ti}_{2} \mathrm{C} \square$ (6 0 12; 1a structure) and $\mathrm{Ti}_{2} \mathrm{~N} \square(4416 ; 1$ structure) at the two ends of the $T_{2}=-2 T_{1}+12$ line are surrounded by three C atoms in a facial configuration in $\mathrm{Ti}_{2} \mathrm{C}$ and three N atoms in a meridional configuration in $\mathrm{Ti}_{2} \mathrm{~N}$, because of the different interaction energies between these atoms.

The carbides $\mathrm{Ti}_{2} \mathrm{C}, \mathrm{Gd}_{2} \mathrm{C}, \mathrm{Ti}_{8} \mathrm{C}_{5}, \mathrm{~V}_{6} \mathrm{C}_{5}$ and $\mathrm{V}_{8} \mathrm{C}_{7}$ are located at low T_{2} values of the structure map, indicating covalent-type bonding, while the nitrides $\mathrm{Ti}_{2} \mathrm{~N}, \mathrm{Nb}_{4} \mathrm{~N}_{3}$ and the hydrides $\mathrm{Pd}_{2} \mathrm{H}, \mathrm{Pd}_{5} \mathrm{D}_{4}$ are located at increased T_{2} values, indicating Coulomb-type interactions (Table $4 b$; Hauck \& Mika, 1994).

The N atoms of $\mathrm{Ti}_{2} \mathrm{~N}$ are further apart than the C atoms of $\mathrm{Ti}_{2} \mathrm{C}$ and are stabilized by Coulomb interactions with a Madelung factor increased by 1.9%. The $\mathrm{Ti}_{2} \mathrm{C}$ structure is stabilized by covalent forces with a slight reduction in the length of all $\mathrm{Ti}-\mathrm{C}$ bonds (Hauck \& Mika, 1994). A similar situation exists for a cis configuration of the Sn atoms in
$\mathrm{Li}_{2} \mathrm{SnO}_{3}(3010 ; 2 \mathrm{~b}$) or mixed cis and trans configuration of Zr atoms in $\mathrm{Li}_{2} \mathrm{ZrO}_{3}$ (2 212 ; 2a). (The O atoms occupy all Cl positions of the NaCl structure.) A structure with all Zr atoms in trans configurations is not possible in NaCl derivative structures. At $y / x=5$, as $e . g$. in $\mathrm{Li}_{5} \mathrm{ReO}_{6}$ or $\mathrm{V}_{6} \mathrm{C}_{5} \square$, isolated ReO_{6} or $\square \mathrm{V}_{6}$ octahedra are formed with one Re atom (or \square) next to each O (or V) atom.

The limiting structures $060 ; 3,048 ; 3,468 ; 1$ and $4416 ; 1$ can be split into structural units u, v, x and y, which can be combined like the parts of a puzzle to obtain the crystal structures found at the right-hand border [Fig. 3A(c), deposited]. The $u^{\prime}, v^{\prime}, x^{\prime}$ and y^{\prime} units are obtained from the u, v, x and y structural units by the translation $a_{0} / 2, a_{0} / 2,0$.

The structures with a single environment of A atoms can be characterized by square or hexagonal layers with small unit cells, as shown in Table 4(a), and one or two structural units such as $x(\mathrm{CuAu})$ or $x y^{\prime} x^{\prime} y(\mathrm{UPb})$ [Fig. 3A(c), deposited]. The $x^{\prime} y$ structural units can be obtained by a shearing of the $x y^{\prime}$ units with the translation $a_{0} / 2, a_{0} / 2,0$. Structures containing several related structural units such as $y x_{9}$ and $y^{\prime} x_{9}^{\prime}$ in CuAu II with the sequence $y x_{9} y^{\prime} x_{9}^{\prime}$ [Fig. $3 \mathrm{~A}(c)$, deposited] are considered as shear structures with antiphase boundaries between $y x_{9}$ and $y^{\prime} x_{9}^{\prime}$ (Schubert, 1964; Sato \& Toth, 1965; Hyde \& Andersson, 1989). Other structures of Fig. 3A(c) (deposited) such as ZrGa_{2} exhibit a symmetrical sequence of structural units (vyuuyv).

The observed structures (Table $4 b$) as e.g. the CuAu II or ZrAl_{3} structure at the right-hand boundary of the structure map (Fig. 5) consist of u, v, x, y structural units, which are connected by $044 ; 1$ square planes (Fig. 1). The other layers of

Figure 5
Structure map of ordered f.c.c. $A_{x} B_{y}$ alloys with s-CN values of A atoms as parameters and structural units $a-y$. The boundary of the structure map is outlined for $r=y / x$ by differently dashed lines. The T_{1} and T_{2} values of the Johansson \& Linde and Brauer (*), Ketelaar (\times) and Forsyth \& Gran families (+) and the [001] (■) or [111] (ธ) layered structures are in different areas of the structure map.
the $\mathrm{CuAu}-\mathrm{UPb}$ and $\mathrm{AuCu}_{3}-\mathrm{TiAl}_{3}$ parent structures do not fit together. The structural units of many structures on the righthand side of the structure map (Fig. 5) are connected by 204 ; 1 or $044 ; 1$ square planes (Table $4 a$). The (theoretical) structures on the left-hand side of the structure map are connected by 666 ; (1) hexagonal planes (Hauck \& Mika, 1994). $\mathrm{Al}_{2} \square_{2} \mathrm{C}_{3}$ (ac') (Ketelaar, 1935; Ketelaar et al., 1947), $\mathrm{Mo}_{3} \mathrm{Al}_{8}\left(g h_{2}\right)$ (Forsyth \& Gran, 1962), CuAu II ($y x_{9} y^{\prime} x_{9}^{\prime}$) (Johansson \& Linde, 1936) and $\mathrm{ZrAl}_{3}\left(v_{4} v_{4}^{\prime}\right)$ (Brauer, 1939) are the first structures of the three structure families (Table $4 b$).

The $A B_{3}$ structures such as $\operatorname{TiAl}_{3}\left(u_{2} u_{2}^{\prime}\right)$ or $\mathrm{ZrAl}_{3}\left(v_{4} v_{4}^{\prime}\right)$ (Brauer, 1939) are obtained from u and v units and the $A B$ structures such as $y x_{9} y^{\prime} x_{9}^{\prime}$ (CuAu II) (Johansson \& Linde, 1936) from a combination of the x and y structural units. The structures with intermediate composition such as $A B_{2}$ are obtained by combination of u, v, x and y units [Table $4 b$, Fig. $3 \mathrm{~A}(c)$, deposited]. The $\mathrm{NaCl}-$ related structures at the righthand border of the structure map contain vacancies in the structural units to approach Pauling's electrovalence rule such as u_{2} for $\square \mathrm{Nb}_{3} \square \mathrm{O}_{3}(\mathrm{NbO}), v^{\prime} x u_{2} x v^{\prime}$ for $\mathrm{V}_{2} \square_{4} \mathrm{O}_{5} \square\left(\mathrm{~V}_{2} \mathrm{O}_{5}\right)$, $u x v^{\prime} x^{\prime} u^{\prime}$ for $\mathrm{Mo}_{2} \square \mathrm{O}_{3}\left(\mathrm{MoO}_{3}\right), u_{2} x v_{4}^{\prime} x u_{2}$ for $\mathrm{Nb}_{3} \square_{7} \mathrm{FO}_{7} \square_{2}$ $\left(\mathrm{Nb}_{3} \mathrm{O}_{7} \mathrm{~F}\right), x v_{2}^{\prime} x u_{2}$ for $\mathrm{Nb}_{2} \square_{4} \mathrm{O}_{5} \square\left(R-\mathrm{Nb}_{2} \mathrm{O}_{5}\right)$ or the twodimensional shear structures of e.g. $(\mathrm{Au}, \mathrm{Zn}) \mathrm{Cu}_{3}, \mathrm{ZnAu}_{3}$ (Schubert, 1964; Sato \& Toth, 1965), $\left(\mathrm{W}_{0.2} \mathrm{~V}_{0.8}\right)_{9} \square_{16} \mathrm{O}_{21} \square_{4}$ $\left[\left(\mathrm{W}_{0.2} \mathrm{~V}_{0.8}\right)_{3} \mathrm{O}_{7}\right]$ or $\mathrm{Nb}_{16} \square_{33} \mathrm{O}_{40} \square_{9} \quad\left(M-\mathrm{Nb}_{2} \mathrm{O}_{5} ;\right.$ Hyde \& Andersson, 1989). The two-dimensional shear structures, however, are not at the border of the structure map and contain different structural elements [hatched areas in Fig. 3A (d), deposited]. Non-periodic antiphase boundaries in two dimensions were observed in ZnAu_{3} (Teuho et al., 1987).

Some of the remaining observed structures (Table 4b) can be classified in a similar way to the three structure families of ordered b.c.c. structures (Table $2 b$). The square layers of A

Figure 6
T_{1}, T_{2} structure map of the p.c. lattice with [001] ($\left.\mathbf{\bullet}\right),[110](\bullet),[111](\mathbf{\Delta})$ layered, ZnS related (\times) and other (() compounds in different areas.
atoms perpendicular to the drawing plane are separated by layers of B atoms in TiCd and CuZr_{2} similar to $\gamma-\mathrm{TiCu}$ and MoSi_{2} (Table 2b). These compounds with T_{i} values 848 ; $1(\mathrm{TiCd})$ and $440 ; 2\left(\mathrm{CuZr}_{2}\right)$, which are not at the border of the f.c.c. structure map (■) (Fig. 5), should be considered as distorted $\gamma-\mathrm{TiCu}$ or MoSi_{2} with the same space groups and Pearson symbols. Most of the observed structures are at boundary lines for the given composition. The only exceptions in Table 4(b) are $\square_{4} \mathrm{Co}_{5} \mathrm{Ge}_{7}$ and $\mathrm{V}_{4} \mathrm{Zn}_{5}$, which should be reinvestigated after extended annealing to avoid a partial disorder which is inherent in all structures inside the structure map.

5. Primitive cubic lattice

The crystal structure of α-Po has a primitive-cubic (p.c.) structure (Galasso, 1970; Donohue, 1974). More important are the CaF_{2} derivative structures (Fig. 3) (Müller, 1991; Juza et al., 1959). The Ca and F atoms form f.c.c. and p.c. structures, respectively, but only the F lattice is considered here. Some compounds with CaF_{2} structure such as $\mathrm{CeO}_{2}, \mathrm{PrO}_{2}$ or TbO_{2} can form oxygen-deficient structures, e.g. $\operatorname{Pr}_{n} \mathrm{O}_{2 n-2}$, where $n=7,9,10,11$, 12 , and some of the oxygen positions are vacant (Schweda et al., 1991; Zhang et al., 1993, 1995a,b, 1996). These compounds and the anions of $\mathrm{PbO}, \mathrm{PtS}$ and $\mathrm{Cu}_{2} \mathrm{O}$ can be described as p.c. compounds $A_{x} B_{y}$ with $A=$ vacancy (\square) and $B=\mathrm{O}$ or S and metal atoms Pb , Pt, Cu at Ca positions of CaF_{2}. The other compounds shown in Fig. 4A (deposited) are derived from the antifluorite structure of $\mathrm{Li}_{2} \mathrm{O}$ with an ordered distribution of metal atoms such as $\beta-\mathrm{Li}_{5} \mathrm{Al}_{\square} \mathrm{O}_{4} \quad$ (Stewner $\quad \&$

Table 4
(a) Cubic close-packed alloys $A_{x} B_{y}$ with single $T_{i}(A)$ and $T_{i}(B)$ values characterized by the s-CN values T_{i} of A atoms in a c.c.p. structure and in square planes (only occupied planes perpendicular to the direction with the highest symmetry are included), space group (SG), Pearson symbol (PS), No. of reduced cells (Table 2A, deposited) and positions of atoms $A_{2}-A_{4}$.

$\begin{aligned} & T_{i}(A) ; y / x \\ & \text { с.c.p. } \end{aligned}$	$T_{i}(A) ; y / x$ square	SG	PS	No.	A_{2}	A_{3}	A_{4}
126 24; (1)	44 ; (1)	225	cF4	1			
93 12; 1	66 6; (1) \dagger	166	$h R 4$	7	101		
(8 $48 ; 1$) \ddagger	44 4; (1)	129	$t P 4$	8	011		
(7 $210 ; 1$)	$322 ; 1$	11	$m P 8$	43	011	101	$1 \overline{1} 2$
(6 $212 ; 1 \mathrm{a}$)	$204 ; 1$	59	$o P 4$	9	011		
(6 $212 ; 1 \mathrm{~b}$)	$204 ; 1$	131	$t P 8$	47	$0 \overline{1} 1$	101	112
(6 $112 ; 1$)	$204 ; 1$	11	$m P 8$	41	011	103	002
60 12; 1a	20 4; 1	166	$h R 2$	2			
60 12; 1b	$204 ; 1$	227	cF32	53	110	011	101
(5 $410 ; 1$)	$122 ; 1$	11	$m P 8$	48	121	101	011
(5 3 12; 1a)	$322 ; 1$	12	$m C 8$	10	002		
(5 $312 ; 1 \mathrm{~b}$)	$222 ; 1$	15	$m C 16$	52	200	$3 \overline{1} 0$	$10 \overline{1}$
$5214 ; 1$	12 2; 1	15	$m C 16$	51	1112	101	$0 \overline{1} 1$
4 68; 1	44 4; (1)	123	$t P 2$	3			
45 12; 1a	04 4; 1	74	oI16	45	$0 \overline{1} 3$	$0 \overline{1} 1$	002
44 16; 1	04 4; 1	141	$t I 8$	13	$0 \overline{1} 1$		
42 12; 1.3a	22 2; 1.3†	2	$a P 7$	34	$1 \overline{1} 0$	$0 \overline{1} 1$	
$4212 ; 1.3 \mathrm{~b}$	22 2; 1.3†	146	$h R 7$	34	$1 \overline{2} 1$	$1 \overline{1} 0$	
33 12; 1.5	$111 ; 1.5$	12	$m C 10$	18	101		
60 6; 2	$666 ;(1) \dagger$	164	$h P 3$	4			
(4 $40 ; 2$) \ddagger	44 4; (1)	139	$t I 6$	5			
22 12; 2a	20 2; 2	71	oI6	6			
22 12; 2b	$060 ; 2 \dagger$	151	$h P 9$	62	$1 \overline{1} 0$	$1 \overline{2} \overline{1}$	
22 12; 2c	$060 ; 2 \dagger$	2	$a P 6$	63	310	$2 \overline{1} 1$	
$219 ; 2.5$	$111 ; 2.5 \dagger$	2	$a P 7$	34	$0 \overline{1} 1$		
$060 ; 3$	04 4; 1	221	cP4	12			
028 8; 4a	0004 ; 4	87	$t I 10$	18			
00 6; 6	$0006 ; 6 \dagger$	166	$h R 7$	34			

(b) Structures and $T_{i}(A)$ values of $A_{x} B_{y} C_{z}$ alloys, and corresponding NaCl and ZnS derivative structures within different series of structural units and other structures [Figs. 3A $(a)-(d)$, deposited, see text].

$\underline{A_{x} B_{y} C_{z}}$		SG	PS	$T_{i}(A / B / C)$	NaCl derivative	ZnS derivative
Cu		225	cF4	126 24; (1)	NaCl	ZnS
$\alpha-\mathrm{Hg}$		166	$h \mathrm{R} 1$	126 24; (1)	NiO	
Al, Zn metast.		166	$h \mathrm{R} 1$	126 24; (1)		
Pr HP		152	$h P 6$	126 24; (1)		
In		139	$t I 2$	126 24; (1)	CoO	
$\gamma-\mathrm{Mn}$		139	$t I 2$	126 24; (1)		
$\alpha^{\prime \prime}$-Ce I		12	$m C 2$	126 24; (1)		
$\alpha^{\prime \prime}$-Ce II		12	$m C 4$	126 24; (1)		
Cf HP		2	$a P 4$	126 24; (1)		
[110] structural units $a-d, k, l$ of Ketelaar (1935), Ketelaar et al. (1947) family [Fig. 3A(a), deposited]						
CuPt, ${ }^{\text {a }}$	a	166	$h R 2$	60 12; 1a	$\alpha-\mathrm{NaFeO}_{2}$, $\mathrm{Gd}_{2} \mathrm{C}, \mathrm{CdCl}_{2}$	$\mathrm{In}(\mathrm{Ga}, \mathrm{Al}) \mathrm{P}_{2}$
CuPt, b	$l l^{\prime}$	227	cF32	60 12; 1b	LiTbS_{2}, $\mathrm{Ti}_{2} \mathrm{C}, \mathrm{ZrS}_{2}$	
$A B$	$a_{2} a_{2}^{\prime}$	66	$o C 16$	$5214 ; 1 \mathrm{a}$	NaDyO_{2}	
$A B$	$a_{3} a^{\prime}$	15	mC16	5214 ; 1b		
$A B$	$b b^{\prime}$	67	$o C 16$	$5314 ; 1$		
UPb	$a a^{\prime}$	141	$t I 8$	$4416 ; 1$	$\mathrm{Pd}_{2} \mathrm{D}, \mathrm{Ti}_{2} \mathrm{~N}$	CuFeS_{2}
$A B$	b	131	$t P 8$	45 12; 1b		
$(\mathrm{Zn}, \mathrm{Ga})_{3} \mathrm{Au}_{5}$	$b c b^{\prime} c$	72	ol32	2.73 .3 10.7; 1.7		
$A_{3} B_{5}$	$k k^{\prime}$	166	$h \mathrm{R} 8$	40 8; 1.7	$\mathrm{Ti}_{8} \mathrm{C}_{5}$	
$A B_{2}$	$a c^{\prime}$	12	$m C 12$	$3010 ; 2 \mathrm{~b}$	$\mathrm{AlCl}_{3}, \mathrm{Li}_{2} \mathrm{SnO}_{3}$	
$A B_{2}$	$a c^{\prime} a^{\prime} c^{\prime}$	70	oF48	$3010 ; 2 \mathrm{c}$	$\mathrm{Sc}_{2} \mathrm{~S}_{3}, \mathrm{CrCl}_{3}$	
$A B_{2}$	$c a^{\prime}$	15	$m C 12$	$2212 ; 2 \mathrm{~d}$	$\mathrm{Li}_{2} \mathrm{ZrO}_{3}$, III	
$A B_{2}$	$a c a^{\prime} c$	70	oF48	22 12; 2f		
CuPt_{3}	c^{\prime}	65	$o C 8$	20 4; 3	$\mathrm{OsCl}_{4}, \mathrm{Tm}_{3} \mathrm{Se}_{4}$	
$A B_{3}$	$a d^{\prime}$	15	$m C 16$	208 ; 3a		
$A B_{3}$	adad'	15	$m C 32$	208 ; 3b		
$A B_{3}$	$a d a^{\prime} d$	15	$m C 32$	208 ; 3c		

Table 4 (continued)

$A_{x} B_{y} C_{z}$		SG	PS	$T_{i}(A / B / C)$	NaCl^{2} derivative	ZnS derivative
$A B_{3}$	$a d$	13	$m P 8$	$208 ; 3 \mathrm{e}$	ZrCl_{4}	
$A B_{3}$	$c c^{\prime}$	69	$o F 32$	$126 ; 3$		
TiAl_{3}	c	139	$t I 8$	$048 ; 3$	$\mathrm{Nb}_{4} \mathrm{~N}_{3}, \mathrm{SnF}_{4}$	$\mathrm{SbCu}_{3} \mathrm{~S}_{4}$
$A B_{4}$	$c^{\prime} d c^{\prime} d^{\prime}$	70	$o F 40$	$106 ; 4 \mathrm{c}$		
$A B_{4}$	$c^{\prime} d$	12	$m C 20$	$106 ; 4 \mathrm{~d}$	$\mathrm{~K}_{4} \mathrm{UO}_{5}$	
$A B_{4}$	$c d d^{\prime}$	70	$o F 80$	$028 ; 4 \mathrm{~b}$		
$A B_{4}$	$d c$	15	$m C 20$	$028 ; 4 \mathrm{c}$	$\mathrm{M}_{4} \mathrm{UO}_{5}$	
$A B_{5}$	$d d^{\prime}$	70	$o F 48$	$008 ; 5 \mathrm{a}$	$\mathrm{Lu}_{5} \mathrm{~S}_{6}$	
$A B_{5}$	d	12	$m C 12$	$008 ; 5 \mathrm{e}$	$\mathrm{V}_{6} \mathrm{C}_{5} \mathrm{I}, \mathrm{Sc}_{5} \mathrm{~S}_{6}$	
					$\beta-\mathrm{Li}_{6} \mathrm{UO}_{6}$	

[210] structural units $e-i$ of Forsyth \& Gran (1962) family [Fig. 3A(b), deposited]

UPb	eg	141	$t I 8$	44 16; 1	$\mathrm{Pd}_{2} \mathrm{D}, \mathrm{Ti}_{2} \mathrm{~N}$	$\mathrm{CuFeS}_{2}, \alpha-\mathrm{ZnCl}_{2}$
CuAu	f	123	$t P 2$	468 \% 1		(Ga, As)(Al, As)
NaHg	f	63	oC16	468 ; 1		
$A_{2} \mathrm{~B}_{3}$	eh	12	$m C 10$	$3312 ; 1.5$		
MoPt_{2}	$e f, g$	71	ol6	22 12; 2a	$\square \mathrm{Ti}_{2} \square \mathrm{O}_{2}$	$\mathrm{GeCu}_{2} \mathrm{Se}_{3}$
$A B_{2}$	$f h$	12	$m C 12$	24 6; 2		
$A B_{2}$	$e i$	12	$m C 12$	328;2		
$\mathrm{Mn}_{2} \mathrm{Au}_{5}$	gh	12	$m C 14$	13 10; 2.5		$\mathrm{NiSi}_{2} \mathrm{Cu}_{4} \mathrm{~S}_{7}$
$A_{2} B_{5}$	${ }_{\text {fi }}$	12	$m C 14$	23 6; 2.5		
$\mathrm{Mo}_{3} \mathrm{Al}_{8}$	$g h_{2}$	12	$m C 22$	0.7 3.3 9.3; 2.7		
$A B_{3}$	$g i$	12	$m C 16$	12 10; 3		
TiAl_{3}	h	139	tI8	04 8; 3	$\mathrm{Nb}_{4} \mathrm{~N}_{3}, \mathrm{SnF}_{4}$	$\mathrm{SbCu}_{3} \mathrm{~S}_{4}$
$A_{2} B_{7}$	$h i$	12	$m C 18$	038 8; 3.5		
MoNi_{4}	i	87	tI10	028 ; 4a	$\mathrm{UF}_{5}, \mathrm{Na}_{4} \mathrm{UO}_{5},$ $\mathrm{Pd}_{5} \mathrm{D}_{4}, \mathrm{Ti}_{4} \mathrm{O}_{5}$	

Hoppe, 1971a), $\beta-\mathrm{Li}_{5} \mathrm{Ga}_{2} \mathrm{O}_{4}$ (Stewner \& Hoppe, 1971b), $\mathrm{Li}_{5} \mathrm{Tl}_{2} \mathrm{O}_{4}$ (Hoppe \& Panek, 1971) or $\mathrm{Na}_{6} \mathrm{~Pb} \square \mathrm{O}_{4}$ (Panek \& Hoppe, 1973).
There were 36 structures with a single environment T_{i} of A and a single environment T_{i} of B atoms $\left(M_{i}=2, \S 2\right)$ obtained in the present investigation (Table $6 a$). The structure map of the p.c. lattice (Fig. 6) is similar to the structure map of CaTiO_{3} related structures (Hauck \& Mika, 1997, 2000a), but different from the structure maps of the square, b.c.c. or f.c.c. lattice (Figs. 2, 4 and 5). The maximum range of the Cowley short-range order parameters $\alpha_{i}(i=1-3)$ is obtained for a tetrahedron with the four structures $0120 ; 1,24$ $8 ; 1,440 ; 1$ and 6128 ; (1) at the corners. A $30 T_{3}$; 1 structure $\left(\alpha_{1}=0, \alpha_{2}=-1\right)$ for covalent bonding is impossible in the p.c. lattice. The lowest $T_{2}=4$ value is obtained in $\mathrm{Pb} \square \mathrm{O}(440 ; 1)$ and $\mathrm{Pt} \square \mathrm{S}(248 ; 1)$ with $y / x=1$. At $y / x=3, T_{2}=0$ is reached in $\mathrm{Si}_{3} \mathrm{~S}_{2}(200 ; 3)$ and $\mathrm{Cu}_{2} \square_{3} \mathrm{O}$ (0 $08 ; 3$). The highest $T_{2}=12$ value in $\mathrm{ZnS}(0120 ; 1)$ indicates a repulsion of Zn atoms. The sCN values T_{1} and T_{2} give the numbers of ZnS_{4} tetrahedra, which are linked by edges and corners, respectively. In the f.c.c. system T_{1} was the number of linked corners; a connection by edges is not allowed in the f.c.c. system (§4). The combination of structural units at the boundary of the structure map was outlined in some detail (Hauck \& Mika, 1997, 2000a).

Most observed structures are within two structure series of (110) layered structures and the ZnS family (Tables $6 b$ and c). The ZnS (sphalerite) related structures are listed already in Table 4(b) because of the two f.c.c. lattices of Zn and S atoms with a translation of $a_{0} / 4, a_{0} / 4$, $a_{0} / 4$. Many structures can be considered as combinations of

Table 4 (continued)

$A_{x} B_{y} C_{z}$	SG	PS	$T_{i}(A / B / C)$	NaCl derivative	ZnS derivative	
Layered (111) structures						
CuPt, a	$(A B)$	166	$h R 2$	$6012 ; 1 \mathrm{a}$	$\alpha-\mathrm{NaFeO}_{2}$	$\mathrm{In}(\mathrm{Ga}, \mathrm{Al}) \mathrm{P}_{2}$
$\mathrm{ZnAl} \mathrm{C}_{2}$	$\left(A B_{2}\right)$	164	$h P 3$	$606 ; 2$	$\mathrm{In}_{2} \mathrm{~S}_{3}$	
$A B$	$\left(A_{2} B_{2}\right)$	166	$h R 4$	$9312 ; 1$		

$\mathrm{CuAu}(\mathrm{CsCl})$ related structures in [001] projection with composition of $\mathrm{Cu} / \mathrm{Au}$ layer

$\mathrm{Ti}_{2} \mathrm{Ga}_{3}$	$A_{4} B / B_{5}$	83	$t P 10$	$356 ; 1.5$
$A B_{3}$	$A B / B_{2}$	65	$o C 4$	$224 ; 3 \mathrm{a}$
PdCu_{4}	$A_{2} B_{3} / B_{5}$	84	$t P 20$	$114 ; 4$
$\square_{4} \mathrm{Co}_{5} \mathrm{Ge}_{7}$	$B_{5} C_{3} /$	107	$t I 24$	$224 ; 3 /$
	$A_{4} C_{4}$			$1.64 .83 .2 ; 2.2 /$
				$4.62 .79 .1 ; 1.3$

$\mathrm{CuPt}(\mathrm{CsCl})$ related structures in [111] projection with composition of $\mathrm{Cu} / \mathrm{Pt}$ layer						
$A B_{2}$	$A_{2} B / B_{3}$	15	$m C 24$	$3010 ; 2 \mathrm{a}$	$\begin{aligned} & \mathrm{TiCl}_{3}, \\ & \beta-\mathrm{Na}_{2} \mathrm{PtO}_{3} \end{aligned}$	
$A B_{5}$	$A B_{2} / B_{3}$	151	$h P 18$	008 ; 5f	$\begin{aligned} & \mathrm{V}_{6} \mathrm{C}_{5}(\mathrm{II}) \\ & \mathrm{Li}_{5} \mathrm{ReO}_{6} \end{aligned}$	
$A B_{5}$	$A B_{2} / B_{3}$	15	$m C 24$	008 8; 5b	$\mathrm{V}_{6} \mathrm{C}_{5}$ (III)	
$A B_{5}$	$A B_{2} / B_{3}$	12	$m C 12$	008 ; 5e	$\square \mathrm{Sc}_{5} \mathrm{~S}_{6}$	
Other compounds						
$A B$		59	$o P 4$	62 12; 1a		
$A B$		131	$t P 8$	62 12; 1b		
$A B_{2}$		151	hP9	22 12; 2e		$\beta-\mathrm{Ga}_{2} \mathrm{Se}_{3}$
$A B_{3}$		63	$o C 16$	22 4; 3b		
$A B_{3}$		15	mC32	208 8; 3d	Hf I_{4}	
$A B_{4}$		14	$m P 20$	107 ; 4a	UCl_{5}	
$A B_{7}$		212	cP32	00 6; 7	$\mathrm{V}_{8} \mathrm{C}_{7}$	
$\mathrm{V}_{4} \mathrm{Zn}_{5}$		139	$t I 18$	54 6; 1.25		
$\mathrm{Mn}_{7} \mathrm{Pd}_{9}$		139	$t I 32$	3.45 .16 .9		
$\mathrm{Zn}_{3} \mathrm{Au}_{5}$		72	oI128	2.73 .79 .3		
$\mathrm{Ga}_{3} \mathrm{Pt}_{5}$		65	oC16	2.74 .75 .3 ;		
$\mathrm{Mn}_{11} \mathrm{Pd}_{21}$		123	$t P 32$	2.24 .4 4.4;		
$\mathrm{Mn}_{9} \mathrm{Au}_{31}$		83	$t P 40$	03.3 7.1; 3		
$\mathrm{GeCa}_{7}, \mathrm{CuPt}_{7}$		225	cF32	000 12; 7		
TiPt_{8}		139	$t I 18$	$020 ; 8$		

6. Conclusions

The present paper shows how the architecture of ordered body-centered, face-centered and primitive cubic structures/ compounds can be analyzed using square planes. The crystal structures of $A_{x} B_{y}$ compounds are characterized by the selfcoordination numbers ($\mathrm{s}-\mathrm{CN}$) of the nearest $\left(T_{1}\right)$, next-nearest $\left(T_{2}\right)$ and third-nearest $\left(T_{3}\right)$ neighbors and the composition y / x of the compound. The s-CN values are plotted in T_{1}, T_{2} or α_{1}, α_{2} structure maps where α_{i} are short-range order parameters, which are related to the T_{i} values as outlined in $\S 1$, step (vi). Structures found at the corners of these structure maps (Figs. 2 and 4-6) usually have high symmetry and the same $T_{1} T_{2} T_{3} ; y / x$ values for all A and for all B atoms. These structures can be decomposed into smaller structural units, e.g. v, v^{\prime} and w^{\prime}, to construct structures that lie along the edges of the structure map and which can be characterized by sequences of structural units as e.g. $v w^{\prime} v_{2}^{\prime} w^{\prime} v$

Table 5
s-CN values of some homologous series of f.c.c. derivative structures with different r and k values (see text).

r^{*}	k	$T_{i}(\mathrm{~A})$	Prototype
2	2	$2212 ; 2 \mathrm{a}$	MoPt_{2}
2	1	$7418 ; 0.5 \mathrm{a}$	$\mathrm{Pt}_{2} \mathrm{Mo}$
2	0	$12624 ; 0$	Cu
3	3	$060 ; 3$	AuCu_{3}
3	2	$468 ; 1$	AuCu^{2}
3	1	$8616 ; 0.33$	$\mathrm{Cu}_{3} \mathrm{Au}$
3	0	$12624 ; 0$	Cu
4	4	$028 ; 4$	MoNi_{4}
4	3	$3312 ; 1.5$	
4	2	$6416 ; 0.67$	
4	1	$9520 ; 0.25$	$\mathrm{Ni}_{4} \mathrm{Mo}$
4	0	$12624 ; 0$	Cu^{4}

$\mathrm{SbCu}_{3} \mathrm{~S}_{4}\left(\mathrm{TiAl}_{3} \square_{4}\right)$, which is 0004 ; 7 b in the CaF_{2} system (Table 6b; Hauck \& Mika, 1998a). The f.c.c. lattices of the Zn or S atoms in ZnS or of Mg , Ag , As or vacancies \square in $\mathrm{MgAg} \square \mathrm{As}$ [Fig. 4A(a), deposited (or $\square \mathrm{NZnLi}$) can be combined in different ways to obtain the p.c. lattice [6 128 ; (1)] for $\mathrm{Mg}+\mathrm{Ag}$ or $\square+$ As combinations or the b.c.c. lattice for the $\mathrm{Mg}+\mathrm{Ag}+$ As combination.
for the Ruddlesden-Popper phase $\mathrm{Sr}_{2} \mathrm{TiO}_{4}$ with $w_{2}^{\prime}(\mathrm{SrO})$ and v_{2} or $v_{2}^{\prime}\left(\mathrm{CaTiO}_{3}\right)$ as structural units (Hauck \& Mika, 1997, 1998b; Parthé et al., 1993).

We could identify approximately 55 structural units in b.c.c. and ~ 25 structural units in f.c.c. alloys. Most of the experimental structures are in six different families of crystal structures, which are named after the pioneers, e.g. the Ruddlesden-Popper phases. The structural units have identical square or in a few cases hexagonal planes which combine in different ways similar to a puzzle to give the different structures.

Most of the observed structures are at the right-hand border of the structure maps with low T_{1}. The interactions between A atoms vary continuously from attractive at low T_{2} to repulsive at high T_{2} values for different $A_{x} B_{y}$ structures on the righthand borders of the structure maps. The weakest interactions are found at the intersection with the line between $T_{1}=T_{2}=0$ and $T_{1}^{\max }, T_{2}^{\max }\left(\alpha_{1}=\alpha_{2}\right)$.

Most structures with a single set of $T_{i}(A)$ values in Tables 2(a) and 4(a), and some structures in Table 6(a) are closely related, because they have identical space groups and Pearson symbols, but different distortions (§4). Structures with identical T_{1} values can belong to the same type of homogeneous sphere packing of A atoms (Koch \& Fischer, 1992). The
density $\rho_{0}=0.74$ of the f.c.c. Cu structure (type 2) for example is reduced to $\rho / \rho_{0}=$ $x /(x+y)$ in $A_{x} B_{y}$ with vacant B positions. For structures on the left-hand borders of the structure maps containing alternating layers of A and B atoms, the packings of A atoms are not stable if the B atoms are removed. The group-subgroup relations (Bärnighausen, 1980; Müller, 1997), which can be arranged for the b.c.c., f.c.c. and p.c. systems (Tables $2-6$ and $1 \mathrm{~A}-3 \mathrm{~A}$, deposited), allow few space groups. In some structures with different space groups such as 42 2; 2a (Table 2a), 22 12; 2a (Table $4 a$) and $224 ; 2$ (Table $6 a$) the projections of the crystal structure in the [111] direction are identical, but different in other directions. The Pearson symbol and sometimes also the space group will change in $\mathrm{NaCl}, \mathrm{ZnS}$ or CaF_{2} derivative structures, if all atom positions are included, or on vacancy formation. In some cases the structures of $A_{x} B_{y}$ compounds can only be compared with the ordering of e.g. anions in NaCl or CaF_{2} derivative structures as e.g. $\square \mathrm{Nb}_{3} \square \mathrm{O}_{3}$ or $\mathrm{Pr}_{7} \square_{2} \mathrm{O}_{12}$, if the location of the cations relative to the vacancies \square is added as additional information.

The position of a compound $A_{x} B_{y}$ in the structure map can be different, as is outlined for the layered [001] and [111] structural series in Figs. 4-6. The formation of layered (001) (Schubert family) and (111) (Zalkin \& Ramsey family) compounds with different compositions of the structural units in the b.c.c. system seems to be the consequence of the fact that most other series of structural units are not at the right-hand border of the structure map, as shown in Figs. $4 \mathrm{~A}(a)-$ (d) (deposited) and 4. In the 0612 ; 1 CsCl structure with an alternation of Cs and Cl atoms in the [001] or [111] direction, the Cs atoms are as far apart as possible with no nearest neighbor. A similar situation occurs in the $0120 ; 1$ ZnS structure of the p.c. lattice (Fig. 6), but not for the 468 ; 1 CuAu structure in the f.c.c. lattice with $T_{1}=4$ nearest Cu neighbors of Cu atoms (Fig. 5). Attractive interactions between $A=\mathrm{Na}, \mathrm{Cu}, \square$ (or $B=\mathrm{Tl}, \mathrm{Pt}, \mathrm{S}$) atoms are suggested for $4012 ; 1 \mathrm{NaTl}$ (Fig. 4) with the s-CN of 4 nearest and 0 next-nearest neighbors, the homometric 60012 ; 1a,b $\mathrm{CuPt} \mathrm{a}, \mathrm{b}$ structures in the f.c.c. system (Fig. 5) and

Table 6
(a) s-CN values of theoretical primitive cubic alloys $A_{x} B_{y}$ with single $T_{i}(A)$ and $T_{i}(B)$ values ($M^{i}=2, \S 2$), $T_{i}(A)$ values of square planes perpendicular to the direction of highest symmetry, space group SG (A and B atoms) and Pearson symbol (PS), No. of reduced cell (Table 3A, deposited) and positions of atoms $A_{2}-A_{8}$.

$\begin{aligned} & \hline T_{i}(A) ; y / x \\ & \text { p.c. } \end{aligned}$	$T_{i}(A) ; y / x$ Square	SG	PS	No.	$\begin{aligned} & A_{2} \\ & A_{6} \end{aligned}$	$\begin{aligned} & A_{3} \\ & A_{7} \end{aligned}$	$\begin{aligned} & A_{4} \\ & A_{8} \end{aligned}$	A_{5}
612 8; (1)	44 4; (1)	221	cP1	1				
$584 ; 1$	44 4; (1)	123	$t P 4$	8	001			
(4 6 4; 1a) \dagger	220 ; 1a	51	$o P 4$	9	001			
(4 $64 ; 1 \mathrm{~b}) \dagger$	220 ; 1b	123	$t P 8$	45	$0 \overline{1} 1$	001	012	
(4 5 2; 1) \dagger	$212 ; 1$	10	$m P 8$	46	$0 \overline{1} 2$	001	002	
$440 ; 1$	44 4; (1)	123	$t P 2$	2				
(3 $64 ; 1 \mathrm{a})$	66 6; (1) \ddagger	166	hR12	12	100			
(3 64 ; 1b)	220 1a	63	oC16	54	$1 \overline{1} \overline{1}$	100	101	
(3 64 1c)	$220 ; 1 \mathrm{~b}$	225	cF64	77	011	101	110	111
					122	212	221	
(3 64 ; 1d)	$220 ; 1 \mathrm{~b}$	160	hR48	77	011	101	110	111
					122	212	223	
(3 64 ; 1e)	$220 ; 1 \mathrm{~b}$	141	$t I 32$	77	011	101	110	111
					122	223	232	
(354; 1a)	$212 ; 1$	2	$a P 8$	58	110	$12 \overline{1}$	120	
(354; 1b)	$212 ; 1$	5	$m C 32$	76	$0 \overline{1} 1$	$0 \overline{1} 2$	001	$1 \overline{1} 1$
					$1 \overline{1} 2$	101	111	
(3 5 4, 1c)	$212 ; 1$	2	$a P 16$	76	$0 \overline{1} 2$	002	012	$1 \overline{1} 1$
					$1 \overline{1} 2$	101	111	
(3 5 4; 1d)	$212 ; 1$	43	$o F 64$	76	$0 \overline{1} 1$	$0 \overline{1} 2$	012	$1 \overline{1} 1$
					$1 \overline{1} 2$	101	111	
(3 5 4, 1e)	$212 ; 1$	15	$m C 32$	76	$0 \overline{1} 2$	001	002	$1 \overline{1} 1$
					$1 \overline{1} 2$	101	111	
(354; 1f)	$212 ; 1$	12	mC32	76	$0 \overline{2} 1$	002	012	$1 \overline{1} 1$
					$1 \overline{1} 2$	101	111	
34 4, 1a	$322 ; 1$	65	$o \mathrm{C} 8$	11	001			
34 4; 1b	$204 ; 1$	141	$t I 16$	61	001	010	101	
$(264 ; 1 a) \dagger$	220 1a	63	$o C 8$	15	$01 \overline{1}$			
(2 $64 ; 1 \mathrm{~b}) \dagger$	$220 ; 1 \mathrm{~b}$	139	$t 16$	62	101	110	211	
(2 5 6; 1) \dagger	$212 ; 1$	12	mC16	57	$01 \overline{2}$	$01 \overline{1}$	$10 \overline{1}$	
248 ; 1	04 4; 1	123	$t P 2$	3				
$184 ; 1$	04 4; 1	123	$t P 4$	14	$00 \overline{1}$			
$0120 ; 1$	04 4; 1	225	cF8	4				
(2 4 4; 1.3a) \dagger	$222 ; 1.3 \ddagger$	146	hR21	40	010	110		
(2 4 4; 1.3b) \dagger,	22 2; 1.3才	2	$a P 7$	40	$11 \overline{1}$	110		
332 , 1.5;	$111 ; 1.5$	10	$m P 5$	19	001			
440 2	$202 ; 2$	123	$t P 3$	5				
22 4; 2a	020 0;	51	$o P 3$	6				
22 4; 2b	060 ; 2 \ddagger	151	$h P 9$	75	010	110		
$222 ; 2$	060 ; 2 \ddagger	2	$a P 9$	74	112	$12 \overline{2}$		
06 2; 2	666 ; (1) \ddagger	164	$h P 3$	7				
(12 3; 2.5) \dagger	$111 ; 2.5 \ddagger$	2	$a P 7$	40	010			
008 8; 3	$004 ; 3$	229	cI8	16				
$200 ; 4$	0004 ; 4	83	$t P 5$	19				
00 2; 6	$0006 ; 6$	148	hR21	40				

\dagger On the borders of the $T_{1} T_{2} T_{3} ; y / x$ polyhedron. \ddagger Hexagonal planar.
(b) Different series of structures and $T_{i}(\square)$ values of $M_{x} \square_{y} \mathrm{O}_{z}$ or CaF_{2} derivative structures with a sequence of layers such as $A=\square, B=\mathrm{O}$ in $\mathrm{Pb} \square \mathrm{O}$ structure, space group SG and Pearson symbol PS for all atoms without vacancy position \square (Fig. 4A, deposited).

$\underline{M_{x} \square_{y} \mathrm{O}_{z}}$		SG	PS	$T_{i}($ ロ)
CaF_{2}		225	cF12	612 8; (1)
EuOF		166	hR9	612 8; (1)
γ-LaOF, ZrH_{2},		123	t P12	612 8; (1)
SiPt_{2}				
Layered (001) structures				
$\mathrm{Pb} \square \mathrm{O}$	$A B$	129	$t P 4$	$440 ; 1$
$M_{3} \square_{2} \mathrm{O}_{4}$	$A B_{2}$	139	t I14	440;2
$M_{2} \square \mathrm{O}_{3}$	$A B_{3}$	129	t P10	440 ; 3
$\mathrm{M} \square \mathrm{O}$	$A_{2} B_{2}$	123	$t P 8$	58 4;1
$M_{3} \square_{2} \mathrm{O}_{4}$	$A B A B_{3}$	129	${ }_{t P 14}$	$440 ; 2$
M■О	$A B A_{2} B_{2}$	99	$t P 12$	4.76 .7 2.7; 1

Table 6 (continued)

$\underline{M_{x} \square_{y} \mathrm{O}_{z}}$		SG	PS	$T_{i}(\square)$
Layered (111) structures				
$\mathrm{M} \square \mathrm{O}$	$A B$	160	hR6	$484 ; 1$
$M_{3} \square_{2} \mathrm{O}_{4}$	$A B_{2}$	164	$h P 7$	$062 ; 2$
$M_{2} \square \mathrm{O}_{3}$	$A B_{3}$	160	hR15	08 0; 3
$M \square \mathrm{O}$	$A_{2} B_{2}$	166	hR12	364 ; 1a
$M_{3} \square_{2} \mathrm{O}_{4}$	$A B A B_{3}$	156	$h P 7$	363 ; 2
$M \square \mathrm{O}$	$A B A_{2} B_{2}$	156	${ }_{\text {hP6 }}$	$283.3 ; 1$
Layered (110) structures with different composition $A=M \mathrm{O}_{2}, A^{\prime}=M_{3} \mathrm{O}_{6}$, $A^{\prime \prime}=M_{4} \mathrm{O}_{8}, B=M \square_{2}, C=M \square \mathrm{O}, D=M_{3} \square \mathrm{O}_{5}, E=M_{4} \square \mathrm{O}_{7}, F=M_{7} \square_{2} \mathrm{O}_{12}$, $G=M_{11} \square_{2} \mathrm{O}_{20}$ (Thornber \& Bevan, 1970)				
$\mathrm{Pt} \square \mathrm{S}$	$A B$	131	$t P 4$	$248 ; 1$
$M_{3} \square_{2} \mathrm{O}_{4}$	$A B_{2}$	65	$o C 6$	$224 ; 2 \mathrm{a}$
$M_{2} \square \mathrm{O}_{3}$	$A B_{3}$	47	$o P 4$	22 4; 3
$\mathrm{M} \square \mathrm{O}$	$A_{2} B_{2}$	51	$o P 4$	464 1a
$M_{3} \square_{2} \mathrm{O}_{4}$	$A B A B_{3}$	47	$o P 6$	236 ; 2
$M \square \mathrm{O}$	$A B A_{2} B_{2}$	25	oP6	$3.35 .35 .3 ; 1$
$\mathrm{Cu}_{2} \square_{3} \mathrm{O}$	$B C$	224/201	cP6	00 8; 3
$\mathrm{Pr}_{7} \square_{2} \mathrm{O}_{12}$	F	148	hR57	$002 ; 6$
$\mathrm{Pr}_{9} \square_{2} \mathrm{O}_{16}$	$A^{\prime} D_{2}$	2	aP25	00 1; 8
$\left(\mathrm{Ce}_{21} \square_{4} \mathrm{O}_{38}\right)$	$A^{\prime} D A^{\prime} D_{2}$			
$\left(\mathrm{Ce}_{19} \square_{4} \mathrm{O}_{34}\right)$	$\begin{aligned} & A^{\prime} D\left(A^{\prime} D_{2}\right. \\ & \text { or } A^{\prime \prime} E_{5} A \end{aligned}$			
$\mathrm{Pr}_{10} \square_{2} \mathrm{O}_{18}$	$A^{\prime \prime} E_{4}$	11	$m P 112$	$001 ; 9$
$\mathrm{Pr}_{12} \square_{2} \mathrm{O}_{22}$	$A^{\prime \prime} E_{2}$	11	$m P 68$	$00003 ; 11$
$\underline{\mathrm{Tb}_{11} \square_{2} \mathrm{O}_{20}}$	G	2	aP31	$00004 ; 10$

(c) ZnS family and other $A_{x} B_{y} C_{z}$ structures with $T_{i}(A / B)$

$A_{x} B_{y} C_{z}$	SG	PS	$T_{i}(A / B)$
ZnS family			
$\mathrm{Zn} \square \mathrm{S}$	216	cF8	$0120 ; 1$
$\mathrm{MgAg} \square \mathrm{As}$	216	cF12	$0120 ; 1$
$\square \mathrm{NZnLi}$	216	cF12	$0120 ; 1$
$\square \mathrm{CdIn}_{2} \mathrm{Se}_{4}$	111	$t P 7$	$000 ; 7 \mathrm{a}$
$\mathrm{SbCu}_{3} \mathrm{~S}_{4}$	121	t t16	000 ; 7b
CuFeS_{2}	122	$t I 16$	040 ; 3b
$\alpha-\mathrm{Zn} \square_{3} \mathrm{Cl}_{2}$	122	$t I 12$	$040 ; 3 \mathrm{~b}$
$(\mathrm{Ga}, \mathrm{As})(\mathrm{Al}, \mathrm{As})$	115	$t P 4$	040 ; 3c
$\mathrm{In}(\mathrm{Ga}, \mathrm{Al}) \mathrm{P}_{2}$	160	$h R 4$	0 60; 3
$\mathrm{GeCu}_{2} \mathrm{Se}_{3}$	44	ol12	020 ; 5a
$\beta-\square \mathrm{Ga}_{2} \mathrm{Se}_{3}$	9	$m C 20$	020 ; 5e
$\mathrm{NiSi}_{2} \mathrm{Cu}_{4} \mathrm{~S}_{7}$	5	$m C 28$	$010 ; 6$
$(\mathrm{Ga}, \mathrm{As})_{2}(\mathrm{Al}, \mathrm{As})_{2}$	115	$t P 8$	080 0; 3
$(\mathrm{Ga}, \mathrm{As})(\mathrm{Al}, \mathrm{As})_{2}$	119	$t I 12$	$040 ; 5$
Other compounds			
$\mathrm{Si} \square_{3} \mathrm{~S} 2$	72	ol12	$200 ; 3$
$\mathrm{Li}_{3} \mathrm{AlN}_{2}$	206	cI96	0 3 2; 3
$(\mathrm{Fe}, \mathrm{Mn})_{2} \square \mathrm{O}_{3}$	206	cI80	0 3 2; 3
$\mathrm{Hg}_{\square} \mathrm{I}_{2}$	137	$t P 12$	04 0; 3a
$\mathrm{Sn} \square_{7} \mathrm{I}_{4}$	205	cP40	00 1; 7
$\mathrm{Li}_{7} \mathrm{VN}_{4}$	218	cP96	000 1.5; 7
$\beta-\mathrm{Li}_{5} \mathrm{Al}_{\square} \mathrm{O}_{4}$	59	$o P 20$	$\begin{array}{lll} 0 & 0 & 0 \\ 2 ; & 7 / \\ 0 & 2 & 4 ; \end{array}$
$\beta-\mathrm{Li}_{5} \mathrm{Ga} \square_{2} \mathrm{O}_{4}$	21	$o C 40$	$\begin{array}{llll} 0 & 0 & 0 & 2 ; 71 \\ 0 & 0 & 8 & 6 ; 3 \end{array}$
$\mathrm{Li}_{5} \mathrm{Tl} \square_{2} \mathrm{O}_{4}$	137	$t P 80$	$\begin{array}{llll} 0 & 0 & 0 & 4 ; 7 \\ 0 & 5 & 0 ; & 3 \end{array}$
$\underline{\mathrm{Na}_{6} \mathrm{~Pb} \square \mathrm{O}}$	217	cI88	$0300 ; 7(\mathrm{~Pb}, \square)$

$\mathrm{Cu}_{3} \mathrm{Au}$ (8 6 16; 0.3), Cu [12 6 24; (1)] with $T_{1}=0,4,8,12, T_{2}=6$ and $T_{3}=0,8$, 16, 24 (Table 5) and identical α_{i} values. In quasi-homologous series of structures (different α_{i} values) the different combinations of the $0012 ; 3$ structure of $\mathrm{Sn}, \mathrm{Mg}, \mathrm{Li}$ and Pd atoms in SnMgLiPd give rise to the $\mathrm{AgSbLi}_{2}, \mathrm{AlMnCu}_{2}$ and NaTl structures [Table $2 b$, Fig. 2A(a) deposited] with different α_{i} values.

A similar situation occurs for magnetic structures (Oleś et al., 1976) with an ordering of two spin directions \oplus and \ominus at Mn atoms in MnS_{2} or MnTe_{2}, where the ordering for example follows the $\mathrm{UPb} \square_{4}$ type $(4416 ; 1)$ or the CuAu_{4} type (4 $68 ; 1$) structures and MnSe_{2} has a structure with intermediate T_{i} values 44.7 13.3; 1. The four spin directions of the Dy atoms in DyAlO_{3} are combined in the same way as the four atoms in a quaternary alloy such as SnMgLiPd (Hauck \& Mika, 2000c). The ordering of magnetic moments in the same structures as the ordering of metal atoms in alloys supports a different view of sphere packing, which has been discussed for many centuries (Brunner, 1971), e.g. the statement of Boscovich (1758): 'Atoms are centres of interactions whose diameters are negligible or of minor interest as compared to their separations'.

The principle of filling sites in a given structure is similar to the way we obtained the different structures. We determined the reduced unit cells with single occupation (Tables 1A-3A deposited) and obtained all structures of the structure maps by occupation of other positions. The observed structures of the homologous and quasi-homologous series are a small selection, where α_{i} values do not change or change only along the boundary of the structure map, respectively. These structures with maximum attractive or repulsive interactions between A (or B) atoms are stabilized by enthalpy.
the 248 ; 1 Pt \square S structure (Fig. 4A, deposited) in the p.c. system.

Two other principles of structure formation besides the combinations of structural units were observed in the present investigation: A stepwise filling of atom positions in homologous structures such as $\mathrm{AuCu}_{3}(060 ; 3), \mathrm{AuCu}(468 ; 1)$,

We acknowledge the support of K. Bickmann and D. Henkel, IFF with the preparation of the figures and the text.

References

Allen, S. M. \& Cahn, J. W. (1972). Acta Metall. 20, 423-433.

Bärnighausen, H. (1980). MATCH, Commun. Math. Chem. 9, 139175.

Brauer, G. (1939). Z. Anorg. Allg. Chem. 242, 1-22.
Brunner, G. O. (1971). Acta Cryst. A27, 388-390.
Burdett, J. K. (1995). Chemical Bonding in Solids. Oxford University Press.
Chattopadhyay, K., Lele, S., Thangaraj, N. \& Ranganathan, S. (1987). Acta Metall. 35, 727-733.
Donohue, J. (1974). The Structures of the Elements. New York: John Wiley.
Ducastelle, F. (1991). Cohesion and Structure, Vol. 3, Order and Phase Stability in Alloys, edited by F. R. de Boer and D. G. Pettifor. Amsterdam: North-Holland.
Finel, A. \& Ducastelle, F. (1984). Mater. Res. Soc. Symp. Proc. 21, 293-298.
Forsyth, J. B. \& Gran, G. (1962). Acta Cryst. 15, 100-104.
Galasso, F. S. (1970). Structure and Properties of Inorganic Solids. Oxford: Pergamon Press.
Hauck, J. (1980). Acta Cryst. A36, 228-237.
Hauck, J., Henkel, D., Klein, M. \& Mika, K. (1999). J. Solid State Chem. 145, 150-158.
Hauck, J., Henkel, D. \& Mika, K. (1988a). Physica C, 153-155, 11731174.

Hauck, J., Henkel, D. \& Mika, K. (1988b). Z. Phys. B, 71, 187-192.
Hauck, J., Henkel, D. \& Mika, K. (1988c). Z. Kristallogr. 182, 124127.

Hauck, J., Henkel, D. \& Mika, K. (1988d). Z. Kristallogr. 182, 297306.

Hauck, J., Henkel, D. \& Mika, K. (1989). Int. J. Mod. Phys. B, 3, 14251433.

Hauck, J. \& Mika, K. (1993). Int. J. Mod. Phys. B, 7, 3423-3433.
Hauck, J. \& Mika, K. (1994). Intermetallic Compounds, Vol. 1, Principles, edited by J. H. Westbrook and R. L. Fleischer, pp. 277307. London: Wiley.

Hauck, J. \& Mika, K. (1997). Studies of High Temperature Superconductors, Vol. 25, edited by A. V. Narlikar, pp. 1-74. Commack New York: Nova Science.
Hauck, J. \& Mika, K. (1998a). J. Solid State Chem. 138, 334-341.
Hauck, J. \& Mika, K. (1998b). Supercond. Sci. Technol. 11, 614-630.
Hauck, J. \& Mika, K. (2000a). Solid State Ion. 127, 1-21.
Hauck, J. \& Mika, K. (2000b). Surface Rev. Lett. In the press.
Hauck, J. \& Mika, K. (2000c). J. Magn. Magn. Mater. 212, 389-400.
Ho, S.-M. \& Douglas, B. E. (1968). J. Chem. Educ. 45, 474-476.
Hoppe, R. \& Panek, P. (1971). Z. Anorg. Allg. Chem. 381, 129-139.
Hyde, B. G. \& Andersson, S. (1989). Inorganic Crystal Structures. New York: Wiley.
Johansson, C. H. \& Linde, J. O. (1936). Ann. Physik, 25, 1-48.
Juza, R., Gieren, W. \& Haug, J. (1959). Z. Anorg. Allg. Chem. 300, 6171.

Kanamori, J. \& Kakehashi, Y. (1977). J. Phys. Colloque 7, 274-279.
Ketelaar, J. A. A. (1935). Z. Kristallogr. A, 90, 237-255.
Ketelaar, J. A. A., MacGillavry, C. H. \& Renes, P. A. (1947). Rec. Trav. Chim. Pays-Bas, 66, 501-512.
Koch, E. \& Fischer, W. (1992). International Tables for Crystallography, edited by A. J. C. Wilson, Vol. C, pp. 654-659. Dordrecht: Kluwer Academic Publishers.
Kripyakevich, P. I. \& Grin, Yu. N. (1979). Sov. Phys. Crystallogr. 24, 41-44.
Křivý, I. \& Gruber, B. (1976). Acta Cryst. A32, 297-298.
MacLaren, J. M., Pendry, J. B., Rous, P. J., Saldin, D. K., Somorjai, G. A., Van Hove, M. A. \& Vvedensky, D. D. (1987). Surface Crystallographic Information Service: A Handbook of Surface Structures. Dordrecht: Reidel.

Mika, K., Hauck, J. \& Funk-Kath, U. (1994). J. Appl. Cryst. 27, 10521055.

Mika, K., Henkel, D. \& Hauck, J. (1989). Z. Kristallogr. 186, 202-204.
Müller, U. (1991). Anorganische Strukturchemie. Stuttgart: Teubner.
Müller, U. (1997). Predictability of Crystal Structures of Inorganic Solids, edited by H. Burzlaff, pp. 74-81. Hünfeld 27.10-30.10. To be published.
Oleś, A., Kajzar, F., Kucab, M. \& Sikora, W. (1976). Magnetic Structures by Neutron Diffraction. Warszawa: Państwowe Wydawnictwo Nakowe.
Panek, P. \& Hoppe, R. (1973). Z. Anorg. Allg. Chem. 400, 208-218.
Pani, M. \& Fornasini, M. L. (1990). Z. Kristallogr. 190, 127-133.
Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K. \& Gladyshevskii, R. (1993). TYPIX: Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types, Vol. 1, Gmelin Handbook of Inorganic and Organometallic Chemistry. Berlin: Springer.
Pauling, L. (1929). J. Am. Chem. Soc. 51, 1010-1026.
Pauling, L. (1960). The Nature of the Chemical Bond. Ithaca, New York: Cornell University Press.
Pearson, W. B. (1972). The Crystal Chemistry and Physics of Metals and Alloys. New York: Wiley.
Sanchez, J. M. \& de Fontaine, D. (1981). Structure and Bonding in Crystals, Vol. II, edited by M. O'Keeffe and A. Navrotsky, pp. 117132. New York: Academic Press.

Sato, H. \& Toth, R. S. (1965). Metallur. Soc. Conf. 29, 295-419.
Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen. Berlin: Springer.
Schubert, K., Anantharaman, T. R., Ata, H. O. K., Meissner, H. G., Pötzschke, M., Rossteutscher, W. \& Stolz, E. (1960). Die Naturwiss. 47, 512.
Schubert, K., Meissner, H. G. \& Rossteutscher, W. (1964). Die Naturwiss. 51, 507.
Schweda, E., Bevan, D. J. M. \& Eyring, L. (1991). J. Solid State Chem. 90, 109-125.
Sohncke, L. (1879). Entwicklung einer Theorie der Kristallstruktur, p. 23. Leipzig: B. G. Teubner.

Stewner, F. \& Hoppe, R. (1971a). Z. Anorg. Allg. Chem. 381, 140-148.
Stewner, F. \& Hoppe, R. (1971b). Z. Anorg. Allg. Chem. 381, 149-160.
Teuho, J., Mäki, J. \& Hiraga, K. (1987). Acta Metall. 35, 721-725.
Thornber, M. R. \& Bevan, D. J. M. (1970). J. Solid State Chem. 1, 536544.

Villars, P. \& Calvert, L. D. (1986). Pearson's Handbook of Crystallographic Data for Intermetallic Phases, Vols. 1-3. Metals Park, OH: American Society for Metals.
Wiener, C. (1863). Die Grundzüge der Weltordnung. I: Atomlehre, p. 82. Leipzig und Heidelberg: Winter.

Wyckoff, R. W. G. (1982). Crystal Structures, Vols. 1-3. Krieger: Malabar, FL.
Zalkin, A. \& Ramsey, W. J. (1956). J. Phys. Chem. 60, 234-236.
Zalkin, A., Ramsey, W. J. \& Templeton, D. H. (1956). J. Phys. Chem. 60, 1275-1277.
Zhang, J., Von Dreele, R. B. \& Eyring, L. (1993). J. Solid State Chem. 104, 21-32.
Zhang, J., Von Dreele, R. B. \& Eyring, L. (1995a). J. Solid State Chem. 118, 133-140.
Zhang, J., Von Dreele, R. B. \& Eyring, L. (1995b). J. Solid State Chem. 118, 141-147.
Zhang, J., Von Dreele, R. B. \& Eyring, L. (1996). J. Solid State Chem. 122, 53-58.

[^0]: ${ }^{1}$ Supplementary data for this paper are available from the IUCr electronic archives (Reference: BR0078). Services for accessing these data are described at the back of the journal.

